Pregunta
1. Indices: a) Simplify: \( \left(2^{3} \times 2^{4}\right) \div 2^{\text {}} \) b) Express \( 81^{1 / 4} \) in its simplest form.
Ask by Bowman Hill. in Egypt
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
a) \( 64 \)
b) \( 3 \)
Solución
Calculate the value by following steps:
- step0: Calculate:
\(81^{\frac{1}{4}}\)
- step1: Factor the number:
\(\left(3^{4}\right)^{\frac{1}{4}}\)
- step2: Evaluate the power:
\(3\)
Calculate or simplify the expression \( (2^3 * 2^4) / 2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(2^{3}\times 2^{4}\right)}{2}\)
- step1: Remove the parentheses:
\(\frac{2^{3}\times 2^{4}}{2}\)
- step2: Multiply:
\(\frac{2^{7}}{2}\)
- step3: Divide the numbers:
\(2^{7-1}\)
- step4: Subtract the terms:
\(2^{6}\)
- step5: Evaluate the power:
\(64\)
Let's simplify each part step by step:
### a) Simplify \( \left(2^{3} \times 2^{4}\right) \div 2 \)
1. **Combine the powers of 2**:
\[
2^{3} \times 2^{4} = 2^{3+4} = 2^{7}
\]
2. **Now divide by \( 2 \)**:
\[
2^{7} \div 2 = 2^{7-1} = 2^{6}
\]
3. **Calculate \( 2^{6} \)**:
\[
2^{6} = 64
\]
So, the simplified result is \( 64 \).
### b) Express \( 81^{1 / 4} \) in its simplest form.
1. **Recognize that \( 81 \) can be expressed as a power of \( 3 \)**:
\[
81 = 3^{4}
\]
2. **Now apply the exponent**:
\[
81^{1/4} = (3^{4})^{1/4} = 3^{4 \cdot (1/4)} = 3^{1} = 3
\]
So, the simplest form of \( 81^{1 / 4} \) is \( 3 \).
### Final Answers:
- a) \( 64 \)
- b) \( 3 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To simplify \( \left(2^{3} \times 2^{4}\right) \div 2^{1} \), first apply the product of powers rule: \( 2^{3} \times 2^{4} = 2^{(3+4)} = 2^{7} \). Now divide by \( 2^{1} \): \( 2^{7} \div 2^{1} = 2^{(7-1)} = 2^{6} \). So the answer is \( 2^{6} \) or \( 64 \). To express \( 81^{1 / 4} \) in its simplest form, first notice that \( 81 = 3^{4} \). Therefore, we rewrite \( 81^{1/4} \) as \( (3^{4})^{1/4} \). Utilize the power of a power rule: \( (3^{4})^{1/4} = 3^{(4 \times \frac{1}{4})} = 3^{1} \). Thus, \( 81^{1/4} = 3 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium