Pregunta
If the graph of the function \( f(x) = 2x + 3 \) is reflected over the line \( y = x \), what is the equation of the resulting inverse function?
Ask by Daniels Best. in South Africa
Feb 13,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The inverse function is \( y = \frac{x - 3}{2} \).
Solución
To reflect the graph of f(x) = 2x + 3 over the line y = x, we essentially swap the x and y coordinates. Start with the equation:
y = 2x + 3
Swap x and y:
x = 2y + 3
Now, solve for y:
2y = x - 3
y = (x - 3)/2
This new equation, y = (x - 3)/2, is the inverse function of f, which is the result of reflecting the original graph over the line y = x.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
![](/pmw/light_bulb.png?etag=525fd69ac661e11754e2fc9f1b18a4ee)
![](/pmw/spiral_notepad.png?etag=abe3906b7558c543a7b30ba53a3b5a5b)
Bonus Knowledge
To find the inverse function after reflecting over the line \( y = x \), start with the equation \( y = 2x + 3 \). Swap \( x \) and \( y \) to get \( x = 2y + 3 \). Now, solve for \( y \): 1. Subtract 3 from both sides: \( x - 3 = 2y \) 2. Divide by 2: \( y = \frac{x - 3}{2} \) Thus, the equation of the resulting inverse function is \( f^{-1}(x) = \frac{x - 3}{2} \).
![](/pmw/img-try-permium.webp)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium