Pregunta
upstudy study bank question image url

Type your answer If a car is climbing a hill at a \( 15^{\circ} \) angle, how many vertical feet will the car travel every 1,000 feet of road? Give your answer rounded to the nearest foot. (Note: \( \sin \left(15^{\circ}\right)=0.259, \cos \left(15^{\circ}\right)=0.966 \), \( \left.\tan \left(15^{\circ}\right) \approx 0.268\right) \)

Ask by Newton Mitchell. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The car will travel 259 vertical feet every 1,000 feet of road.

Solución

To determine how many vertical feet a car will travel when climbing a hill at a \(15^{\circ}\) angle over a 1,000-foot road, you can use the sine function from trigonometry. The sine of an angle in a right triangle gives the ratio of the opposite side (vertical height) to the hypotenuse (road length). **Calculation:** \[ \text{Vertical feet} = \text{Road length} \times \sin(\theta) \] Where: - \(\theta = 15^{\circ}\) - \(\sin(15^{\circ}) = 0.259\) - Road length = 1,000 feet \[ \text{Vertical feet} = 1,000 \times 0.259 = 259 \text{ feet} \] **Answer:** The car will travel **259 vertical feet** every 1,000 feet of road.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the vertical distance the car travels while climbing the hill, we can use the sine function which relates the angle to the vertical height of a right triangle. The formula is: \[ \text{Vertical Distance} = \text{Distance traveled} \times \sin(\theta) \] Here, the distance traveled is 1,000 feet and \(\theta = 15^{\circ}\): \[ \text{Vertical Distance} = 1000 \times \sin(15^{\circ}) = 1000 \times 0.259 \approx 259 \] To the nearest foot, the car will travel approximately 259 vertical feet. Now let’s get to some fun facts! Did you know that the concept of angles and hills has been a part of navigation and architecture since ancient times? The ancient Greeks contributed significantly to our understanding of geometry and trigonometry, laying the groundwork for how we calculate inclines today! Additionally, this kind of calculation isn’t just for cars! Engineers use similar calculations in designing roads, bridges, and even ski slopes. Understanding the incline helps ensure safety and functionality, making sure drivers and skiers can navigate those slopes with ease. So the next time you’re on a steep hill, remember the science that keeps you safe!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad