Pregunta
upstudy study bank question image url

This quiz: 100 point(s) Question 1 of 10 possible This question: 10 point(s) possible Submit quiz Find the zeros for the polynomial function and give the multiplicity for each zero. State whether the graph crosses the \( x \)-axis or touches the \( x \)-axis and turns around at each zero. \[ f(x)=2(x-7)(x+4)^{3} \] Determine the zero(s). The zero(s) is/are \( \square \) \( \square \). (Type integers or decimals. Use a comma to separate answers as needed.) Determine the multiplicities of the zero(s). Select the correct choice below and, if necessary, fill in the answer box(es) within your choice. A. There are two zeros. The multiplicity of the largest zero is \( \square \) The multiplicity of the smallest zero is \( \square \) ]. (Simplify your answers.) B. There are three zeros. The multiplicity of the largest zero is \( \square \) The multiplicity of the smallest zero is \( \square \) . The multiplicity of the other zero is \( \square \) ]. (Simplify your answers.) C. There is one zero. The multiplicity of the zero is \( \square \) 1. (Simplify your answer.)

Ask by Bob Chan. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Zeros:** 7, -4 **Multiplicities:** - 7: 1 (crosses the x-axis) - -4: 3 (crosses the x-axis)

Solución

Let's analyze the polynomial function: \[ f(x) = 2(x - 7)(x + 4)^3 \] ### 1. **Finding the Zero(s)** To find the zeros of the function, set \( f(x) = 0 \): \[ 2(x - 7)(x + 4)^3 = 0 \] This equation is satisfied when either \( x - 7 = 0 \) or \( (x + 4)^3 = 0 \). - **Zero 1:** \( x - 7 = 0 \) → \( x = 7 \) - **Zero 2:** \( x + 4 = 0 \) → \( x = -4 \) **Zero(s):** \( 7, -4 \) ### 2. **Determining Multiplicities** Each zero's multiplicity is determined by the exponent of its corresponding factor in the polynomial. - **Zero at \( x = 7 \):** The factor \( (x - 7) \) has an exponent of **1**. - **Zero at \( x = -4 \):** The factor \( (x + 4)^3 \) has an exponent of **3**. **Multiplicity:** - **Largest Zero (\( 7 \)):** Multiplicity **1** - **Smallest Zero (\( -4 \)):** Multiplicity **3** **Selection:** **A. There are two zeros. The multiplicity of the largest zero is \( 1 \). The multiplicity of the smallest zero is \( 3 \).** ### 3. **Behavior of the Graph at Each Zero** - **Zero at \( x = 7 \) (Multiplicity 1):** - **Behavior:** The graph **crosses** the \( x \)-axis. - **Zero at \( x = -4 \) (Multiplicity 3):** - **Behavior:** The graph **crosses** the \( x \)-axis. *Note:* Since both zeros have **odd** multiplicities, the graph will **cross** the \( x \)-axis at each zero. ### **Summary** - **Zero(s):** \( 7, -4 \) - **Multiplicity of \( 7 \):** \( 1 \) (Graph crosses the \( x \)-axis) - **Multiplicity of \( -4 \):** \( 3 \) (Graph crosses the \( x \)-axis)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the zeros of the polynomial function \( f(x) = 2(x-7)(x+4)^3 \), we can set each factor equal to zero. The first zero comes from \( x - 7 = 0 \), giving us \( x = 7 \). The second zero comes from \( (x + 4)^3 = 0 \), which yields \( x = -4 \). Therefore, the zeros are \( 7, -4 \). For their multiplicities, \( x = 7 \) has a multiplicity of 1 (since \( (x-7) \) is to the first power) and \( x = -4 \) has a multiplicity of 3 (because \( (x+4)^3 \) indicates a power of 3). So, the completed answers are: - The zero(s) is/are \( 7, -4 \). - The multiplicity of \( 7 \) is \( 1 \) and the multiplicity of \( -4 \) is \( 3 \). Now to the interaction with the \( x \)-axis: since the multiplicity of \( -4 \) is odd, the graph touches the \( x \)-axis at \( -4 \) and turns around. At \( 7 \), the graph crosses the \( x \)-axis. In summary: - The zero(s) is/are \( 7, -4 \). - The multiplicity of the largest zero is \( 1 \) and the multiplicity of the smallest zero is \( 3 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad