Pregunta

A car's velocity is given by the function \( v(t) = 5t^2 + 3 \). Calculate the distance traveled by the car from time \( t = 0 \) to \( t = 4 \).

Ask by Daniel Bowers. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The car travels \(\frac{356}{3}\) units, or approximately 118.67 units, from \( t = 0 \) to \( t = 4 \).

Solución

To calculate the distance traveled by the car from time \( t = 0 \) to \( t = 4 \) seconds, we'll integrate the velocity function over this interval. Given the velocity function: \[ v(t) = 5t^2 + 3 \] **Step 1: Set Up the Integral** The distance \( d \) traveled is the integral of velocity with respect to time: \[ d = \int_{0}^{4} v(t) \, dt = \int_{0}^{4} (5t^2 + 3) \, dt \] **Step 2: Integrate the Function** We'll integrate each term separately. 1. **Integrate \( 5t^2 \):** \[ \int 5t^2 \, dt = 5 \cdot \frac{t^3}{3} = \frac{5}{3} t^3 \] 2. **Integrate \( 3 \):** \[ \int 3 \, dt = 3t \] So, the integrated function is: \[ \frac{5}{3} t^3 + 3t \] **Step 3: Evaluate the Integral from 0 to 4** Plug in the upper and lower limits of the integral. 1. **At \( t = 4 \):** \[ \frac{5}{3} (4)^3 + 3(4) = \frac{5}{3} \times 64 + 12 = \frac{320}{3} + 12 = \frac{320}{3} + \frac{36}{3} = \frac{356}{3} \] 2. **At \( t = 0 \):** \[ \frac{5}{3} (0)^3 + 3(0) = 0 + 0 = 0 \] **Step 4: Calculate the Total Distance** Subtract the lower limit result from the upper limit result: \[ d = \frac{356}{3} - 0 = \frac{356}{3} \text{ units} \] **Step 5: Convert to Decimal (Optional)** \[ \frac{356}{3} \approx 118.67 \text{ units} \] **Final Answer:** The car travels a distance of \(\frac{356}{3}\) units, which is approximately 118.67 units, from \( t = 0 \) to \( t = 4 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the distance traveled by the car from time \( t = 0 \) to \( t = 4 \), we need to find the displacement by integrating the velocity function. The velocity function is given by: \[ v(t) = 5t^2 + 3 \] We will integrate this function from \( t = 0 \) to \( t = 4 \): \[ \text{Distance} = \int_{0}^{4} v(t) \, dt = \int_{0}^{4} (5t^2 + 3) \, dt \] Calculating the integral: \[ \int (5t^2 + 3) \, dt = \frac{5}{3}t^3 + 3t + C \] Now we evaluate it from \( t = 0 \) to \( t = 4 \): \[ \left[ \frac{5}{3}t^3 + 3t \right]_{0}^{4} = \left( \frac{5}{3}(4^3) + 3(4) \right) - \left( \frac{5}{3}(0^3) + 3(0) \right) \] Calculating \( 4^3 \): \[ 4^3 = 64 \] Now substituting back into the equation: \[ = \frac{5}{3}(64) + 12 = \frac{320}{3} + 12 \] Expressing 12 with a common denominator: \[ 12 = \frac{36}{3} \] Now, combining the two terms: \[ \frac{320}{3} + \frac{36}{3} = \frac{356}{3} \] Thus, the distance traveled by the car from \( t = 0 \) to \( t = 4 \) is: \[ \frac{356}{3} \approx 118.67 \text{ units} \]

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad