a) \( \left(\frac{a^{2}}{2}-\frac{b^{3}}{3}\right)^{2}=\left(\frac{a}{2}\right)^{2}+2\left(\frac{a}{2}\right)\left(\frac{3}{3}\right)+(-)^{2} \) b) \( \left(\frac{-m^{3}}{5}+\frac{2 n}{3}\right)^{2}=\left(\frac{5}{5}\right)^{2}+2(-)(3)+(3)^{2} \) c) \( \left(\frac{1}{x^{2}}-\frac{2}{y^{2}}\right)^{2}=\left(\frac{1}{2}\right)^{2}+2(x)\left(\frac{2}{1}\right)+\left(\frac{2}{5}\right)^{2} \) d) \( \left(-\frac{1}{7} a^{-5}-\frac{b}{3}\right)^{2}=\left(4^{4}\right)^{2}+2(3)(3)+\left(\frac{1}{5}\right)^{2} \) e) \( \left(m^{3}-\frac{n}{2}\right)^{2}=\left(m^{3}\right)^{2}+2\left(m^{3}\right)(n)+(-n)^{2} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
![](/pmw/light_bulb.png?etag=525fd69ac661e11754e2fc9f1b18a4ee)
![](/pmw/spiral_notepad.png?etag=abe3906b7558c543a7b30ba53a3b5a5b)
Bonus Knowledge
When looking at the expansion of a binomial expression, it’s important to remember the formula \((x+y)^2 = x^2 + 2xy + y^2\). This foundation allows us to simplify complex expressions by correctly identifying \(x\) and \(y\). So, whether dealing with polynomials or fractions, practicing with various forms can help solidify the concept! Real-world applications of the square of a binomial can be found in areas such as physics and engineering. For instance, when calculating the trajectory of an object, one must often square terms to find potential energy. Similarly, in finance, understanding how different variables interact can be understood using binomial expansions. Trust me, knowing how to expand binomials can really add value to your problem-solving toolkit!
![](/pmw/img-try-permium.webp)