Pregunta
Find the slope and the \( y \)-intercept of the line. \( y=\frac{1}{4} x \) slope: \( y \)-intercept: \( \square \)
Ask by Ruiz Guerrero. in the United States
Feb 02,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The slope is \( \frac{1}{4} \) and the \( y \)-intercept is \( 0 \).
Solución
To determine the slope and the \( y \)-intercept of the line given by the equation:
\[
y = \frac{1}{4}x
\]
we can compare it to the slope-intercept form of a linear equation:
\[
y = mx + b
\]
where:
- \( m \) is the **slope** of the line.
- \( b \) is the **\( y \)-intercept**, the point where the line crosses the \( y \)-axis.
**1. Finding the Slope (\( m \)):**
In the equation \( y = \frac{1}{4}x \), the coefficient of \( x \) is \( \frac{1}{4} \). This coefficient represents the slope of the line.
\[
\text{slope} = \frac{1}{4}
\]
**2. Finding the \( y \)-Intercept (\( b \)):**
The equation can be rewritten to explicitly show the \( y \)-intercept by comparing it to the slope-intercept form:
\[
y = \frac{1}{4}x + 0
\]
Here, the constant term is \( 0 \), which means the line crosses the \( y \)-axis at the origin.
\[
y\text{-intercept} = 0
\]
**Final Answer:**
\[
\boxed{
\begin{aligned}
\text{slope: } & \frac{1}{4} \\
y\text{-intercept: } & 0
\end{aligned}
}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
The slope of the line given by the equation \( y = \frac{1}{4} x \) is \( \frac{1}{4} \). This means for every 4 units you move horizontally to the right, the line rises by 1 unit vertically. The \( y \)-intercept of the line is the point where the line crosses the \( y \)-axis. In this case, since there is no constant term added (the equation can be rewritten as \( y = \frac{1}{4} x + 0 \)), the \( y \)-intercept is at the origin: \( (0, 0) \) or simply \( 0 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium