Pregunta
Factor by grouping. \( 12 y^{2}+17 y+6 \)
Ask by Warner Weber. in the United States
Feb 02,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( 12y^{2} + 17y + 6 = (4y + 3)(3y + 2) \)
Solución
To factor the quadratic expression \( 12y^{2} + 17y + 6 \) by grouping, follow these steps:
### Step 1: Multiply the Leading Coefficient and the Constant Term
Multiply the coefficient of \( y^2 \) (which is 12) by the constant term (which is 6):
\[ 12 \times 6 = 72 \]
### Step 2: Find Two Numbers That Multiply to 72 and Add to 17
We need to find two numbers that multiply to 72 and add up to 17. These numbers are **8** and **9** because:
\[ 8 \times 9 = 72 \]
\[ 8 + 9 = 17 \]
### Step 3: Rewrite the Middle Term Using These Numbers
Express the middle term \( 17y \) as the sum of \( 8y \) and \( 9y \):
\[ 12y^{2} + 8y + 9y + 6 \]
### Step 4: Group the Terms
Group the terms into two pairs:
\[ (12y^{2} + 8y) + (9y + 6) \]
### Step 5: Factor Out the Greatest Common Factor (GCF) from Each Group
Factor out the GCF from each pair:
- From the first group \( (12y^{2} + 8y) \), the GCF is \( 4y \):
\[ 4y(3y + 2) \]
- From the second group \( (9y + 6) \), the GCF is \( 3 \):
\[ 3(3y + 2) \]
### Step 6: Factor Out the Common Binomial Factor
Both groups contain the common binomial factor \( (3y + 2) \):
\[ 4y(3y + 2) + 3(3y + 2) = (4y + 3)(3y + 2) \]
### Final Factored Form
The expression factored by grouping is:
\[ 12y^{2} + 17y + 6 = (4y + 3)(3y + 2) \]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
First, factor by grouping by rearranging the middle term. Rewrite \( 17y \) as \( 12y + 5y \), so the expression becomes \( 12y^2 + 12y + 5y + 6 \). Next, group the terms: \( (12y^2 + 12y) + (5y + 6) \). Now, factor common terms from each group: \( 12y(y + 1) + 5(y + 1) \). Now, notice that both terms share a common factor of \( (y + 1) \): \( (12y + 5)(y + 1) \). The final factored form is: \[ (12y + 5)(y + 1) \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium