Pregunta
upstudy study bank question image url

1. Add or subtract each expression. List any restrictions on the variables. a. \( \frac{3 y}{4}-\frac{x}{3}+\frac{5 y}{6} \)

Ask by Wang Bob. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The simplified expression is \( \frac{19y - 4x}{12} \). There are no restrictions on the variables.

Solución

Calculate or simplify the expression \( \frac{3y}{4}-\frac{x}{3}+\frac{5y}{6} \). Simplify the expression by following steps: - step0: Solution: \(\frac{3y}{4}-\frac{x}{3}+\frac{5y}{6}\) - step1: Reduce fractions to a common denominator: \(\frac{3y\times 3}{4\times 3}-\frac{x\times 4}{3\times 4}+\frac{5y\times 2}{6\times 2}\) - step2: Multiply the numbers: \(\frac{3y\times 3}{12}-\frac{x\times 4}{3\times 4}+\frac{5y\times 2}{6\times 2}\) - step3: Multiply the numbers: \(\frac{3y\times 3}{12}-\frac{x\times 4}{12}+\frac{5y\times 2}{6\times 2}\) - step4: Multiply the numbers: \(\frac{3y\times 3}{12}-\frac{x\times 4}{12}+\frac{5y\times 2}{12}\) - step5: Transform the expression: \(\frac{3y\times 3-x\times 4+5y\times 2}{12}\) - step6: Multiply the terms: \(\frac{9y-x\times 4+5y\times 2}{12}\) - step7: Reorder the terms: \(\frac{9y-4x+5y\times 2}{12}\) - step8: Multiply the terms: \(\frac{9y-4x+10y}{12}\) - step9: Add the terms: \(\frac{19y-4x}{12}\) The simplified expression is \( \frac{19y-4x}{12} \). There are no restrictions on the variables in this expression.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To combine the expressions \( \frac{3y}{4} - \frac{x}{3} + \frac{5y}{6} \), we first need a common denominator. The least common multiple of 4, 3, and 6 is 12. Rewriting each term gives us: - \( \frac{3y}{4} = \frac{9y}{12} \) - \( -\frac{x}{3} = -\frac{4x}{12} \) - \( \frac{5y}{6} = \frac{10y}{12} \) Now we can combine them: \[ \frac{9y}{12} - \frac{4x}{12} + \frac{10y}{12} = \frac{(9y + 10y - 4x)}{12} = \frac{19y - 4x}{12} \] The restrictions on the variables occur from the original denominators, thus \( x \neq 0 \) and \( y \) can take any value, as there are no restrictions on it. However, keep in mind that \( y \) must not make any expression undefined if set in context with specific equations. Now, let's keep things interesting! Did you know that fractions have been around since ancient civilizations? The Egyptians used a form of fractions for trade and building, laying groundwork for modern mathematics! Just imagine them exchanging goods with funky hieroglyphs instead of dollars! Also, to avoid common mistakes with fractions, always be mindful of your least common denominator! A simple miscalculation there can lead you astray. It’s like trying to board a train at a different platform—wrong setup, wrong result! Grab that common denominator, and you’re golden!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad