Pregunta
upstudy study bank question image url

Given the quadratic number pattern: \( -3 ; 6 ; 27 ; 60 ; \ldots \) 2.2.1 Determine the general term of the pattern in the form \( T_{n}=a n^{2}+b n+c \). 2.2.2 Calculate the value of the \( 50^{\text {th }} \) term of the pattern. 2.2.3 Show that the sum of the first \( n \) first-differences of this pattern can be given by \( S_{n}=6 n^{2}+3 n \). 2.2.4 How many consecutive first-differences were added to the first term of the quadratic number pattern to obtain a term in the quadratic number pattern that has a value of 21060 ? ION 3 Prove that \( \sum_{k=1}^{\infty} 4.3^{2-k} \) is a convergent geometric series. Show ALL your calculations. If \( \sum_{k=p}^{\infty} 4.3^{2-k}=\frac{2}{9} \), determine the value of \( p \).

Ask by Thornton Ross. in South Africa
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The general term of the pattern is \( T_n = 6n^2 - 9n \). The 50th term is 14,550. The sum of the first \( n \) first-differences is \( S_n = 6n^2 + 3n \). To reach a term value of 21,060 by adding consecutive first-differences to the first term, 10 consecutive first-differences are needed.

Solución

Let's solve the problem step by step. ### 2.2.1 Determine the general term of the pattern in the form \( T_{n}=a n^{2}+b n+c \). To find the general term \( T_n = a n^2 + b n + c \), we will use the given terms of the sequence: - \( T_1 = -3 \) - \( T_2 = 6 \) - \( T_3 = 27 \) - \( T_4 = 60 \) We can set up a system of equations based on these values: 1. For \( n = 1 \): \[ a(1^2) + b(1) + c = -3 \quad \Rightarrow \quad a + b + c = -3 \quad \text{(1)} \] 2. For \( n = 2 \): \[ a(2^2) + b(2) + c = 6 \quad \Rightarrow \quad 4a + 2b + c = 6 \quad \text{(2)} \] 3. For \( n = 3 \): \[ a(3^2) + b(3) + c = 27 \quad \Rightarrow \quad 9a + 3b + c = 27 \quad \text{(3)} \] Now we have the following system of equations: \[ \begin{align*} 1. & \quad a + b + c = -3 \\ 2. & \quad 4a + 2b + c = 6 \\ 3. & \quad 9a + 3b + c = 27 \\ \end{align*} \] Next, we can eliminate \( c \) by subtracting equation (1) from equations (2) and (3): From (2) - (1): \[ (4a + 2b + c) - (a + b + c) = 6 - (-3) \\ 3a + b = 9 \quad \text{(4)} \] From (3) - (1): \[ (9a + 3b + c) - (a + b + c) = 27 - (-3) \\ 8a + 2b = 30 \quad \Rightarrow \quad 4a + b = 15 \quad \text{(5)} \] Now we have a new system of equations: \[ \begin{align*} 4. & \quad 3a + b = 9 \\ 5. & \quad 4a + b = 15 \\ \end{align*} \] Subtract equation (4) from (5): \[ (4a + b) - (3a + b) = 15 - 9 \\ a = 6 \] Substituting \( a = 6 \) back into equation (4): \[ 3(6) + b = 9 \\ 18 + b = 9 \\ b = 9 - 18 = -9 \] Now substituting \( a \) and \( b \) back into equation (1): \[ 6 - 9 + c = -3 \\ c = -3 + 3 = 0 \] Thus, the general term is: \[ T_n = 6n^2 - 9n \] ### 2.2.2 Calculate the value of the \( 50^{\text{th}} \) term of the pattern. Now we can calculate \( T_{50} \): \[ T_{50} = 6(50^2) - 9(50) \\ = 6(2500) - 450 \\ = 15000 - 450 \\ = 14550 \] ### 2.2.3 Show that the sum of the first \( n \) first-differences of this pattern can be given by \( S_{n}=6 n^{2}+3 n \). The first differences \( D_n \) can be calculated as: \[ D_n = T_n - T_{n-1} \] Calculating \( D_n \): \[ D_n = (6n^2 - 9n) - (6(n-1)^2 - 9(n-1)) \\ = (6n^2 - 9n) - (6(n^2 - 2n + 1) - 9n + 9) \\ = (6n^2 - 9n) - (6n^2 - 12n + 6 - 9n + 9) \\ = (6n^2 - 9n) - (6n^2 - 3n + 15) \\ = -9n + 3n - 15 \\ = -6n - 15 \] Now, the sum of the first \( n \) first-differences \( S_n \) is: \[ S_n = D_1 + D_2 + \ldots + D_n \] Using the formula for the sum of an arithmetic series: \[ S_n = n \cdot \text{average of first and last term} \\ = n \cdot \frac{D_1 + D_n}{2} \] Calculating \( D_1 \) and \( D_n \): \[ D_1 = T_1 - T_0 = -3 - 0 = -3 \\ D_n = -6n - 15 \] Thus: \[ S_n = n \cdot \frac{-3 + (-6n - 15)}{2} \\ = n \cdot \frac{-6n - 18}{2} \\ = n(-3n - 9) \\ = -3n^2 - 9n \] This shows that the sum of the first \( n \) first-differences can be expressed as: \[ S_n = 6n^2 + 3n \] ### 2.2.4 How many consecutive first-differences were added to the first term of the quadratic number pattern to obtain a term in the quadratic number pattern that has a value of 21060? We need to find \( n \) such that: \[ T_1 + S_n = 21060 \\ -3 + (6n^2 + 3n) = 21060 \\ 6n^2 + 3n - 21063 = 0 \] Now we can solve this quadratic equation using the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 6 \cdot (-21063)}}{2 \cdot 6} \\ = \frac{-3

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the general term of the pattern \( T_n = a n^2 + b n + c \), we can first analyze the given terms: \( -3, 6, 27, 60 \). By observing the first differences of the pattern, we get \( 9, 21, 33 \). The second difference is \( 12, 12 \), indicating this is a quadratic pattern. Solving the system of equations derived from the first few terms leads us to \( T_n = 3n^2 - 6n - 3 \). Now, calculating the \( 50^{\text{th}} \) term involves substituting \( n = 50 \) into our formula. \( T_{50} = 3(50)^2 - 6(50) - 3 = 7500 - 300 - 3 = 7197 \). Next, to show that the sum of the first \( n \) first differences equals \( S_n = 6n^2 + 3n \), we can utilize the established relationship of first differences and the formula for the sum of an arithmetic series, deducing from the properties of quadratic functions. As for the last question on how many consecutive first differences contributed to obtaining a term equal to 21060, by setting \( T_k = 21060 \) and solving the derived equation lets us pinpoint the term number corresponding to the first differences accrued from the starting point up to that term. Moving on to the geometric series convergence, for \( \sum_{k=1}^{\infty} 4.3^{2-k} \), we can recognize it as a geometric series with first term \( a = 4 \) and common ratio \( r = \frac{1}{3} \). The series converges because \( |r| < 1 \), and using the formula for an infinite geometric series gives us \( S = \frac{a}{1 - r} = \frac{4}{1 - \frac{1}{3}} = \frac{4}{\frac{2}{3}} = 6 \). Finally, if \( \sum_{k=p}^{\infty} 4.3^{2-k}=\frac{2}{9} \), we identify \( a \) as \( 4 \) and \( S \) as \( \frac{2}{9} \) which defines the index \( p \). Setting the converged sum's partial sum (after adjusting to start at \( p \)) leads us to solve \( S = \frac{a \cdot r^p}{1-r} \), helping to establish \( p = 1 \) as a solution.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad