Responder
To graph the equation \( 3x + 2y = 6 \), follow these steps:
1. **Find Intercepts:**
- **\( x \)-Intercept:** \( (2, 0) \)
- **\( y \)-Intercept:** \( (0, 3) \)
2. **Create a Table of Values:**
| \( x \) | \( y \) |
|---------|---------|
| -2 | 6 |
| -1 | 4.5 |
| 0 | 3 |
| 1 | 1.5 |
| 2 | 0 |
3. **Graph Using Slope-Intercept Form (\( y = -\frac{3}{2}x + 3 \)):**
- Plot \( (0, 3) \) and \( (2, 0) \), then draw a straight line through them.
4. **Graph Using Intercept Form (\( \frac{x}{2} + \frac{y}{3} = 1 \)):**
- Plot \( (2, 0) \) and \( (0, 3) \), then draw a straight line through them.
All methods result in the same straight line passing through the intercepts \( (2, 0) \) and \( (0, 3) \).
Solución
Sure, let's work through each part of the problem step by step.
### **Given Equation:**
\[ 3x + 2y = 6 \]
---
### **a. Determine the \( x \)- and \( y \)-Intercepts**
**1. \( x \)-Intercept:**
- To find the \( x \)-intercept, set \( y = 0 \) and solve for \( x \).
\[
3x + 2(0) = 6 \\
3x = 6 \\
x = 2
\]
- **\( x \)-Intercept:** \( (2, 0) \)
**2. \( y \)-Intercept:**
- To find the \( y \)-intercept, set \( x = 0 \) and solve for \( y \).
\[
3(0) + 2y = 6 \\
2y = 6 \\
y = 3
\]
- **\( y \)-Intercept:** \( (0, 3) \)
---
### **b. Create a Table of Values Using at Least 5 Points**
To graph the equation accurately, it's helpful to plot several points. We'll choose various \( x \)-values and solve for the corresponding \( y \)-values.
**Given Equation:**
\[
3x + 2y = 6 \\
\Rightarrow 2y = 6 - 3x \\
\Rightarrow y = -\frac{3}{2}x + 3
\]
**Table of Values:**
| \( x \) | \( y \) Calculation | \( y \) Value |
|---------|---------------------------------|---------------|
| -2 | \( y = -\frac{3}{2}(-2) + 3 = 3 + 3 = 6 \) | 6 |
| -1 | \( y = -\frac{3}{2}(-1) + 3 = 1.5 + 3 = 4.5 \) | 4.5 |
| 0 | \( y = -\frac{3}{2}(0) + 3 = 0 + 3 = 3 \) | 3 |
| 1 | \( y = -\frac{3}{2}(1) + 3 = -1.5 + 3 = 1.5 \) | 1.5 |
| 2 | \( y = -\frac{3}{2}(2) + 3 = -3 + 3 = 0 \) | 0 |
**Points to Plot:**
- \((-2, 6)\)
- \((-1, 4.5)\)
- \((0, 3)\)
- \((1, 1.5)\)
- \((2, 0)\)
---
### **c. Graph Using Slope-Intercept Form \( y = mx + b \)**
**Step 1: Convert to Slope-Intercept Form**
\[
3x + 2y = 6 \\
\Rightarrow 2y = -3x + 6 \\
\Rightarrow y = -\frac{3}{2}x + 3
\]
- **Slope (\( m \))**: \( -\frac{3}{2} \)
- **\( y \)-Intercept (\( b \))**: \( 3 \)
**Step 2: Plot the Graph**
1. **Start at the \( y \)-intercept:** Plot the point \( (0, 3) \).
2. **Use the slope to find another point:** From \( (0, 3) \), move down 3 units and right 2 units to reach \( (2, 0) \).
3. **Draw the Line:** Connect the points with a straight line, extending in both directions.
**Graph Representation:**
```
y
|
6 | *
5 |
4 | *
3 | *
2 |
1 | *
0 |__________ x
0 1 2
```
---
### **d. Graph Using Intercept Form**
**Intercept Form of a Line:**
\[
\frac{x}{a} + \frac{y}{b} = 1
\]
where \( a \) is the \( x \)-intercept and \( b \) is the \( y \)-intercept.
**Given Equation:**
\[
3x + 2y = 6
\]
**Convert to Intercept Form:**
\[
\frac{3x}{6} + \frac{2y}{6} = 1 \\
\Rightarrow \frac{x}{2} + \frac{y}{3} = 1
\]
- **\( x \)-Intercept (\( a \))**: \( 2 \) (from \( \frac{x}{2} \))
- **\( y \)-Intercept (\( b \))**: \( 3 \) (from \( \frac{y}{3} \))
**Step 1: Plot the Intercepts**
- Plot \( (2, 0) \) and \( (0, 3) \).
**Step 2: Draw the Line**
- Connect the two intercepts with a straight line, extending in both directions.
**Graph Representation:**
```
y
|
6 |
5 |
4 |
3 | *
2 |
1 |
0 |*__________ x
0 1 2
```
---
### **Final Graph Combining All Methods**
All three graphing methods should result in the same straight line passing through the points \( (2, 0) \) and \( (0, 3) \). Here's a simplified representation:
```
y
|
6 | *
5 |
4 | *
3 | *
2 |
1 | *
0 |__________ x
0 1 2
```
- **Key Points:** \((-2, 6)\), \((-1, 4.5)\), \((0, 3)\), \((1, 1.5)\), \((2, 0)\)
- **Slope-Intercept Form:** \( y = -\frac{3}{2}x + 3 \)
- **Intercept Form:** \( \frac{x}{2} + \frac{y}{3} = 1 \)
All methods provide consistent ways to graph the equation \( 3x + 2y = 6 \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución