Pregunta
Find the domain of the function. \( g(x)=\sqrt{5 x+35} \) What is the domain of \( g \) ? (Type your answer in interval notation.)
Ask by Grant Griffin. in the United States
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The domain of \( g(x) = \sqrt{5x + 35} \) is all real numbers \( x \) such that \( x \geq -7 \). In interval notation, this is \([-7, \infty)\).
Solución
To determine the domain of the function \( g(x) = \sqrt{5x + 35} \), we need to ensure that the expression inside the square root is non-negative, as the square root of a negative number is not defined in the set of real numbers.
1. **Set the radicand (expression inside the square root) to be non-negative:**
\[
5x + 35 \geq 0
\]
2. **Solve for \( x \):**
\[
5x \geq -35
\]
\[
x \geq -7
\]
This inequality tells us that \( x \) must be greater than or equal to \(-7\) for \( g(x) \) to be real and defined.
**Therefore, the domain of \( g \) in interval notation is:**
\[
[-7, \infty)
\]
**Answer:** \([-7,\,\infty)\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find the domain of \( g(x) = \sqrt{5x + 35} \), we need to ensure that the expression inside the square root is non-negative. This means: \[ 5x + 35 \geq 0 \] Solving this gives: \[ 5x \geq -35 \] \[ x \geq -7 \] Thus, the domain of \( g \) is all real numbers \( x \) such that \( x \) is greater than or equal to \(-7\). In interval notation, the domain is: \[ [-7, \infty) \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium