Pregunta
upstudy study bank question image url

A candlemaker uses 240 cubic centimeters of wax to create a scented candle using a cylindrical mold. He decides to offer a larger-sized candle, which uses twice as much wax as the smaller-sized candle. Which mold can he use to make the larger-sized candle? \[ \text { A. a cylinder with a height that is double the height of the original mold, and a radius that is the same as the radius of the original mold } \] B. a cylinder with a height that is double the height of the original mold, and a radius that is one-half the radius of the original mold height that is the same as the height of the original mold, and a radius that is double the radius of the original mold D. Next

Ask by Kelley Ross. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To make a larger candle using twice the wax, the candlemaker should use a cylinder that is **double the height** and has the **same radius** as the original mold.

Solución

To determine which mold the candlemaker should use to make a larger-sized candle that uses **twice** as much wax as the original (i.e., **480 cubic centimeters**), we can analyze each option based on the volume formula for a cylinder: \[ \text{Volume} = \pi r^2 h \] Where: - \( r \) is the radius - \( h \) is the height ### **Option A** - **Description:** A cylinder with a height that is **double** the height of the original mold, and a radius that is the **same** as the radius of the original mold. - **Calculation:** \[ \text{New Volume} = \pi r^2 (2h) = 2 \times \pi r^2 h = 2V \] - **Result:** **Doubles** the original volume. This option correctly achieves the desired increase. ### **Option B** - **Description:** There seem to be two interpretations, but both lead to incorrect results: 1. **First Interpretation:** A cylinder with a height that is **double** and a radius that is **half** the original. \[ \text{New Volume} = \pi \left(\frac{r}{2}\right)^2 (2h) = \pi \frac{r^2}{4} \times 2h = \frac{1}{2}V \] - **Result:** Halves the original volume, which is **incorrect**. 2. **Second Interpretation:** A cylinder with a height that is the **same** and a radius that is **double** the original. \[ \text{New Volume} = \pi (2r)^2 h = \pi 4r^2 h = 4V \] - **Result:** Quadruples the original volume, which is **incorrect**. ### **Conclusion** Only **Option A** correctly results in a cylinder that uses **twice** the wax of the original mold. **Answer:** **A. a cylinder with a height that is double the height of the original mold, and a radius that is the same as the radius of the original mold**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The fantastic thing about cylindrical molds is that their volume can be calculated with the formula \( V = \pi r^2 h \). Since our candlemaker is looking to double the wax volume to 480 cubic centimeters, he can get creative with the dimensions while still fitting the volume equation. If he keeps the radius the same and doubles the height, he will indeed achieve the desired volume, keeping it practical and stylish. Alternatively, if he maintains the height of the original mold and doubles the radius, he’ll also create a larger volume. This way, the spotlight stays on the effectiveness and aesthetics of the candle, plus who doesn’t love a good visual with a larger, lovely candle?! Each option brings its own charm, but it’s all about choosing the right one for the desired effect!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad