Pregunta
upstudy study bank question image url

The least positive coterminal angle is \( 482^{\circ} \). (Simplify your answer. Type an integer or a fraction.) The greatest negative coterminal angle is \( -238^{\circ} \). (Simplify your answer. Type an integer or a fraction.) When it is in standard position, the terminal side of A lies in

Ask by Allan Wyatt. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The least positive coterminal angle is \( 122^{\circ} \), the greatest negative coterminal angle is \( -238^{\circ} \), and the terminal side of angle \( A \) lies in **Quadrant II**.

Solución

Let's simplify the given coterminal angles and determine the quadrant in which the terminal side of angle \( A \) lies when it's in standard position. ### 1. Least Positive Coterminal Angle for \( 482^{\circ} \) To find the least positive coterminal angle, subtract \( 360^{\circ} \) from \( 482^{\circ} \): \[ 482^{\circ} - 360^{\circ} = 122^{\circ} \] **Simplified Answer:** \( \boxed{122} \) ### 2. Greatest Negative Coterminal Angle for \( -238^{\circ} \) To find the greatest negative coterminal angle, we want the coterminal angle that's closest to \( 0^{\circ} \) but still negative. Since adding \( 360^{\circ} \) to \( -238^{\circ} \) gives a positive angle: \[ -238^{\circ} + 360^{\circ} = 122^{\circ} \] This is positive, so the greatest negative coterminal angle is the original angle itself. **Simplified Answer:** \( \boxed{-238} \) ### 3. Quadrant of Angle \( A \) in Standard Position The least positive coterminal angle is \( 122^{\circ} \). To determine the quadrant: - **Quadrant I:** \( 0^{\circ} < \theta < 90^{\circ} \) - **Quadrant II:** \( 90^{\circ} < \theta < 180^{\circ} \) - **Quadrant III:** \( 180^{\circ} < \theta < 270^{\circ} \) - **Quadrant IV:** \( 270^{\circ} < \theta < 360^{\circ} \) Since \( 122^{\circ} \) is between \( 90^{\circ} \) and \( 180^{\circ} \), the terminal side of angle \( A \) lies in: **Answer:** **Quadrant II**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the least positive coterminal angle of \( 482^{\circ} \), you subtract \( 360^{\circ} \) (a full rotation) until the angle is less than \( 360^{\circ} \). So, \( 482^{\circ} - 360^{\circ} = 122^{\circ} \). For the greatest negative coterminal angle of \( -238^{\circ} \), add \( 360^{\circ} \) to find a positive angle: \( -238^{\circ} + 360^{\circ} = 122^{\circ} \). Hence, both angles share a coterminal relationship, confirming that \( 122^{\circ} \) is the least positive coterminal angle. The terminal side of angle \( 122^{\circ} \) lies in the second quadrant. In standard position, angles are measured counterclockwise from the positive x-axis, placing \( 122^{\circ} \) between \( 90^{\circ} \) and \( 180^{\circ} \). Thus, the angle extends past the y-axis but doesn't reach the x-axis on the left. It's an excellent spot for the stylish rise of trigonometric functions!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad