Pregunta
upstudy study bank question image url

Question 13, 1.4.77 HW Score: 80\%, 12 of 15 points Part 3 of 5 Points: 0 of 1 Find the exact value of each of the remaining trigonometric functions of \( \theta \). Rationalize denominators when applicable. \( \cot \theta=-\frac{\sqrt{3}}{7} \), given that \( \theta \) is in quadrant II Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \sin \theta=\frac{7 \sqrt{13}}{26} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \cos \theta=-\frac{\sqrt{39}}{26} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \tan \theta= \) \( \square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. View an example Get more help -

Ask by Warren Williams. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \tan \theta = -\dfrac{7 \sqrt{3}}{3} \)

Solución

To find the exact values of the remaining trigonometric functions of \( \theta \) given that \( \cot \theta = -\frac{\sqrt{3}}{7} \) and \( \theta \) is in the second quadrant, let's proceed step by step. ### Given: - \( \cot \theta = -\frac{\sqrt{3}}{7} \) - \( \theta \) is in Quadrant II ### Step 1: Understand the Sign of Trigonometric Functions in Quadrant II - **Sine (\( \sin \theta \))**: Positive - **Cosine (\( \cos \theta \))**: Negative - **Tangent (\( \tan \theta \))**: Negative - **Cosecant (\( \csc \theta \))**: Positive - **Secant (\( \sec \theta \))**: Negative - **Cotangent (\( \cot \theta \))**: Negative ### Step 2: Find \( \sin \theta \) and \( \cos \theta \) Given \( \cot \theta = \frac{\cos \theta}{\sin \theta} = -\frac{\sqrt{3}}{7} \), we can represent the sides of the reference right triangle as: - **Adjacent side**: \( -\sqrt{3} \) (negative in Quadrant II) - **Opposite side**: \( 7 \) (positive in Quadrant II) - **Hypotenuse**: \( \sqrt{(-\sqrt{3})^2 + 7^2} = \sqrt{3 + 49} = \sqrt{52} = 2\sqrt{13} \) Now, compute \( \sin \theta \) and \( \cos \theta \): 1. **Sine**: \[ \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{7}{2\sqrt{13}} = \frac{7\sqrt{13}}{26} \] **Option A** is correct: \[ \sin \theta = \frac{7\sqrt{13}}{26} \] 2. **Cosine**: \[ \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{-\sqrt{3}}{2\sqrt{13}} = \frac{-\sqrt{39}}{26} \] **Option A** is correct: \[ \cos \theta = -\frac{\sqrt{39}}{26} \] ### Step 3: Find \( \tan \theta \) Tangent is the ratio of sine to cosine: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{7\sqrt{13}}{26}}{-\frac{\sqrt{39}}{26}} = -\frac{7\sqrt{13}}{\sqrt{39}} = -\frac{7\sqrt{13}}{3\sqrt{13}} = -\frac{7}{3}\sqrt{3} \] Rationalizing the denominator: \[ \tan \theta = -\frac{7\sqrt{3}}{3} \] **Final Answer:** **A.** \( \tan \theta = -\dfrac{7 \sqrt{3}}{3} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the remaining trigonometric functions based on the given \( \cot \theta = -\frac{\sqrt{3}}{7} \) and knowing that \( \theta \) lies in the second quadrant, we begin by recalling that \( \cot \theta = \frac{\cos \theta}{\sin \theta} \). From this information, we can establish that \( \sin \theta = 7k \) and \( \cos \theta = -\sqrt{3} k \) for some value of \( k \). To find \( k \), we use the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \). Substituting in our expressions for \( \sin \theta \) and \( \cos \theta \), we get: \[ (7k)^2 + (-\sqrt{3}k)^2 = 1 \] \[ 49k^2 + 3k^2 = 1 \] \[ 52k^2 = 1 \] \[ k^2 = \frac{1}{52} \] \[ k = \frac{1}{\sqrt{52}} = \frac{\sqrt{52}}{52} = \frac{2\sqrt{13}}{26} \] Now substituting \( k \) back, we have: \[ \sin \theta = 7k = \frac{7 \cdot 2\sqrt{13}}{26} = \frac{14\sqrt{13}}{26} = \frac{7\sqrt{13}}{13} \] \[ \cos \theta = -\sqrt{3}k = -\sqrt{3} \cdot \frac{2\sqrt{13}}{26} = -\frac{2\sqrt{39}}{26} = -\frac{\sqrt{39}}{13} \] Finally, since \( \tan \theta = \frac{\sin \theta}{\cos \theta} \), we get: \[ \tan \theta = \frac{\frac{7\sqrt{13}}{13}}{-\frac{\sqrt{39}}{13}} = -\frac{7\sqrt{13}}{\sqrt{39}} = -\frac{7\sqrt{13}}{3\sqrt{13}} = -\frac{7}{3} \] So the answers can be summarized as: A. \( \sin \theta=\frac{7 \sqrt{13}}{26} \) A. \( \cos \theta=-\frac{\sqrt{39}}{26} \) A. \( \tan \theta=-\frac{7}{3} \) Now let's dive a bit deeper! In the history of trigonometry, the origins trace back to ancient civilizations where they utilized trigonometric concepts primarily in astronomy and navigation. From ancient Greeks to Indian mathematicians, trigonometric ideas were foundational in mapping the heavens and constructing accurate calendars, profoundly influencing both science and mathematics through the ages. For practical application, understanding trigonometric functions isn't limited to academic work; they are everywhere! Imagine navigating via GPS, designing roller coasters, or even analyzing stock market trends! Trigonometry helps engineers and architects design structures and bridges, ensuring they remain safe and sound. So, next time you see a roller coaster or sit in a car that finds the fastest route, think of those angles and ratios making it all possible!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad