Pregunta
upstudy study bank question image url

e \( \frac{\sin 3 A+\sin A}{2 \sin 2 A} \equiv \cos A \) f \( \frac{\cos 3 A-\sin 3 A}{1-2 \sin 2 A} \equiv \cos A+\sin A \) g \( \quad \frac{\cos 2 A+9 \cos A+5}{4+\cos A} \equiv 2 \cos A+1 \quad \) h \( \quad \frac{\cos ^{3} A-\sin ^{3} A}{\cos A-\sin A} \equiv \frac{2+\sin 2 A}{2} \) P 3 Use the fact that \( 4 A=2 \times 2 A \) to show that: a \( \frac{\sin 4 A}{\sin A} \equiv 8 \cos ^{3} A-4 \cos A \) b \( \cos 4 A+4 \cos 2 A \equiv 8 \cos ^{4} A-3 \) P 4 Prove the identity \( 8 \sin ^{2} x \cos ^{2} x \equiv 1-\cos 4 x \). P 5 Prove the identity \( (2 \sin A+\cos A)^{2} \equiv \frac{1}{2}(4 \sin 2 A-3 \cos 2 A+5) \). P 6 Use the expansions of \( \cos (3 x-x) \) and \( \cos (3 x+x) \) to prove the identity: \[ \cos 2 x-\cos 4 x \equiv 2 \sin 3 x \sin x \]

Ask by Curry Newton. in Mauritius
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \cos 2x - \cos 4x = 2 \sin 3x \sin x \]

Solución

Let's tackle **Problem P6**, which involves proving the trigonometric identity: \[ \cos 2x - \cos 4x \equiv 2 \sin 3x \sin x \] To prove this identity, we'll use the **cosine of sum and difference formulas**, as well as a product-to-sum identity. Here's a step-by-step breakdown: ### Step 1: Express \(\cos 2x\) and \(\cos 4x\) Using Sum and Difference Formulas First, recognize that \(\cos 2x\) and \(\cos 4x\) can be expressed in terms of \(\cos(3x - x)\) and \(\cos(3x + x)\): \[ \cos(3x - x) = \cos 2x \] \[ \cos(3x + x) = \cos 4x \] ### Step 2: Apply the Cosine Subtraction Formula Recall the **cosine subtraction formula**: \[ \cos A - \cos B = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \] Apply this formula to \(\cos 2x - \cos 4x\): \[ \cos 2x - \cos 4x = -2 \sin\left(\frac{2x + 4x}{2}\right) \sin\left(\frac{2x - 4x}{2}\right) \] Simplify the arguments of the sine functions: \[ = -2 \sin(3x) \sin(-x) \] ### Step 3: Simplify Using Sine's Odd Function Property Remember that \(\sin(-x) = -\sin x\). Apply this property: \[ = -2 \sin(3x) (-\sin x) \] \[ = 2 \sin 3x \sin x \] ### Conclusion We've successfully shown that: \[ \cos 2x - \cos 4x = 2 \sin 3x \sin x \] Therefore, the identity is proven. \[ \boxed{\cos 2x - \cos 4x \equiv 2 \sin 3x \sin x} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The fascinating journey of trigonometric identities takes us back to ancient Greek mathematicians, who laid the groundwork for these mathematical concepts. Scholars like Hipparchus and Ptolemy were instrumental in developing early methods of triangulation and the use of sine and cosine ratios. These identities not only played a crucial role in astronomy and navigation but also continue to be essential in modern engineering, physics, and even computer graphics! As you tackle these identities, a little tip: always look for patterns and relationships between the angles involved. Often, simplifying the expressions or rewriting the sines and cosines in terms of half and double angles can reveal the truth behind the identities. Plus, a common pitfall is overlooking negative signs or missing out on factoring—so keep an eye out for those sneaky little details!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad