e \( \frac{\sin 3 A+\sin A}{2 \sin 2 A} \equiv \cos A \) f \( \frac{\cos 3 A-\sin 3 A}{1-2 \sin 2 A} \equiv \cos A+\sin A \) g \( \quad \frac{\cos 2 A+9 \cos A+5}{4+\cos A} \equiv 2 \cos A+1 \quad \) h \( \quad \frac{\cos ^{3} A-\sin ^{3} A}{\cos A-\sin A} \equiv \frac{2+\sin 2 A}{2} \) P 3 Use the fact that \( 4 A=2 \times 2 A \) to show that: a \( \frac{\sin 4 A}{\sin A} \equiv 8 \cos ^{3} A-4 \cos A \) b \( \cos 4 A+4 \cos 2 A \equiv 8 \cos ^{4} A-3 \) P 4 Prove the identity \( 8 \sin ^{2} x \cos ^{2} x \equiv 1-\cos 4 x \). P 5 Prove the identity \( (2 \sin A+\cos A)^{2} \equiv \frac{1}{2}(4 \sin 2 A-3 \cos 2 A+5) \). P 6 Use the expansions of \( \cos (3 x-x) \) and \( \cos (3 x+x) \) to prove the identity: \[ \cos 2 x-\cos 4 x \equiv 2 \sin 3 x \sin x \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
The fascinating journey of trigonometric identities takes us back to ancient Greek mathematicians, who laid the groundwork for these mathematical concepts. Scholars like Hipparchus and Ptolemy were instrumental in developing early methods of triangulation and the use of sine and cosine ratios. These identities not only played a crucial role in astronomy and navigation but also continue to be essential in modern engineering, physics, and even computer graphics! As you tackle these identities, a little tip: always look for patterns and relationships between the angles involved. Often, simplifying the expressions or rewriting the sines and cosines in terms of half and double angles can reveal the truth behind the identities. Plus, a common pitfall is overlooking negative signs or missing out on factoring—so keep an eye out for those sneaky little details!