Pregunta
upstudy study bank question image url

Question 13, 1.4.77 HW Score: 80\%, 12 of Part 4 of 5 Pointss 0 of 1 Find the exact value of each of the remaining trigonometric functions of \( \theta \). Rationalize denominators when applicable. \( \cot \theta=-\frac{\sqrt{3}}{7} \), given that \( \theta \) is in quadrant II B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \cos \theta=-\frac{\sqrt{39}}{26} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the sinswer box to complete your choice. A. \( \tan \theta=-\frac{7 \sqrt{3}}{3} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \csc \theta= \) \( \square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. View an example Get more help -

Ask by Johnston Ward. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \csc \theta = \frac{2\sqrt{13}}{7} \)

Solución

To find the exact value of \( \csc \theta \) given that \( \cot \theta = -\frac{\sqrt{3}}{7} \) and \( \theta \) is in Quadrant II, we'll follow these steps: ### Step 1: Understand the Given Information - **Quadrant II**: In this quadrant, sine is positive, and cosine is negative. - **\( \cot \theta = \frac{\cos \theta}{\sin \theta} = -\frac{\sqrt{3}}{7} \)**: This implies that \( \cos \theta \) is negative and \( \sin \theta \) is positive. ### Step 2: Set Up the Right Triangle Let’s consider a right triangle where: - **Adjacent side** (to angle \( \theta \)): \( -\sqrt{3} \) (negative because cosine is negative in Quadrant II) - **Opposite side**: \( 7 \) ### Step 3: Find the Hypotenuse Using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{(\text{Adjacent})^2 + (\text{Opposite})^2} = \sqrt{(-\sqrt{3})^2 + 7^2} = \sqrt{3 + 49} = \sqrt{52} = 2\sqrt{13} \] ### Step 4: Calculate \( \sin \theta \) \[ \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{7}{2\sqrt{13}} \] Rationalizing the denominator: \[ \sin \theta = \frac{7}{2\sqrt{13}} \times \frac{\sqrt{13}}{\sqrt{13}} = \frac{7\sqrt{13}}{26} \] ### Step 5: Find \( \csc \theta \) \[ \csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{7\sqrt{13}}{26}} = \frac{26}{7\sqrt{13}} \] Rationalizing the denominator: \[ \csc \theta = \frac{26}{7\sqrt{13}} \times \frac{\sqrt{13}}{\sqrt{13}} = \frac{26\sqrt{13}}{91} = \frac{2\sqrt{13}}{7} \] ### Final Answer **A.** \( \csc \theta = \frac{2\sqrt{13}}{7} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the remaining trigonometric functions given \( \cot \theta = -\frac{\sqrt{3}}{7} \) in quadrant II, we can first determine \( \sin \theta \) and \( \cos \theta \) using the relationships between trigonometric functions. With \( \cot \theta = \frac{1}{\tan \theta} \), we find \( \tan \theta = -\frac{7}{\sqrt{3}} \). Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can substitute and solve to find the exact values. The key here is that since \( \theta \) is in quadrant II, \( \sin \theta \) will be positive and \( \cos \theta \) will be negative. By constructing a right triangle with a height of 7 and a base of \(\sqrt{3}\), we can apply the Pythagorean theorem to find the hypotenuse, resulting in a value of \(\sqrt{7^2 + (\sqrt{3})^2} = \sqrt{49 + 3} = \sqrt{52} = 2\sqrt{13}\). Now we have: - \( \sin \theta = \frac{7}{2\sqrt{13}} = \frac{7\sqrt{13}}{26} \) - \( \cos \theta = -\frac{\sqrt{39}}{26} \) (as given) - \( \tan \theta = -\frac{7}{\sqrt{3}} \) simplifies to \( -\frac{7\sqrt{3}}{3} \) - To find \( \csc \theta \), we take the reciprocal of \( \sin \theta \): \( \csc \theta = \frac{2\sqrt{13}}{7} \) So, make sure you label these functions correctly based on their quadrant attributes!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad