Pregunta
upstudy study bank question image url

Two planes left an airport at noon. One flew East at a certain speed, and the other flew west at twice the eed of the first plane. The planes were 2700 miles apart in 3 hours. How fast was each plane flying? \[ 2700=r \cdot 3 \]

Ask by Bright Thornton. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Each plane was flying at 300 mph and 600 mph respectively.

Solución

To determine the speeds of the two planes, let's break down the problem step by step. ### **Given:** 1. **Plane 1** flies **East** at a speed of **\( r \) miles per hour (mph)**. 2. **Plane 2** flies **West** at **twice** the speed of Plane 1, so its speed is **\( 2r \) mph**. 3. Both planes depart from the same airport at the same time (noon). 4. After **3 hours**, the distance between the two planes is **2700 miles**. ### **Objective:** Find the speed of each plane (\( r \) and \( 2r \)). ### **Solution:** 1. **Calculate the distance traveled by each plane in 3 hours:** - **Plane 1 (East-bound):** \[ \text{Distance}_1 = \text{Speed} \times \text{Time} = r \times 3 = 3r \text{ miles} \] - **Plane 2 (West-bound):** \[ \text{Distance}_2 = \text{Speed} \times \text{Time} = 2r \times 3 = 6r \text{ miles} \] 2. **Determine the total distance between the two planes after 3 hours:** Since the planes are flying in opposite directions (East and West), their distances add up. \[ \text{Total Distance} = \text{Distance}_1 + \text{Distance}_2 = 3r + 6r = 9r \text{ miles} \] 3. **Set up the equation using the given total distance:** \[ 9r = 2700 \] 4. **Solve for \( r \):** \[ r = \frac{2700}{9} = 300 \text{ mph} \] 5. **Determine the speed of each plane:** - **Plane 1 (East-bound):** \( r = 300 \) mph - **Plane 2 (West-bound):** \( 2r = 2 \times 300 = 600 \) mph ### **Conclusion:** - **Plane 1** was flying **East** at **300 mph**. - **Plane 2** was flying **West** at **600 mph**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the speeds of the planes, let's denote the speed of the first plane (flying East) as \( r \) miles per hour. The second plane (flying West) is traveling at \( 2r \) miles per hour. In the 3 hours they were in the air, the distance covered by the first plane is \( 3r \) and by the second is \( 6r \) since \( 2r \cdot 3 = 6r \). The total distance between the two planes is the sum of these distances: \[ 3r + 6r = 9r. \] We know from the problem that they are 2700 miles apart after 3 hours, so we set up the equation: \[ 9r = 2700. \] Dividing both sides by 9, we find: \[ r = 300. \] This means the first plane is flying at 300 miles per hour, while the second plane, flying at twice that speed, goes at 600 miles per hour! Now you can visualize two speedy planes taking off at noon, zipping away from each other like a thrilling race on the skyway! Who knew math could unveil such an exciting aerial showdown between the East and West? If you're ever on a long flight, think about how these planes are covering vast distances in mere hours. Air travel has transformed our world, allowing us to connect with distant places and cultures faster than ever before. Just imagine the adventures waiting for you on your next journey, whether it’s a weekend getaway or a grand international expedition!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad