Pregunta
upstudy study bank question image url

Convert improper fractions to mixed numbers Grade 4 Fractions Worksheet \( \begin{array}{lll}\text { Convert. } \\ \begin{array}{lll}\text { 1. } \frac{21}{12}= & \text { 2. } \frac{7}{4}= & \text { 3. } \frac{40}{12}=\end{array}\end{array} \)

Ask by Morrison Fuentes. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \frac{21}{12} = 1 \frac{3}{4} \), \( \frac{7}{4} = 1 \frac{3}{4} \), \( \frac{40}{12} = 3 \frac{1}{3} \)

Solución

Sure! Let's convert each improper fraction to a mixed number step by step. ### 1. Convert \( \frac{21}{12} \) to a mixed number: - **Divide the numerator by the denominator:** \( 21 \div 12 = 1 \) with a **remainder** of **9**. - **Write the mixed number:** The whole number is **1**, and the remainder becomes the new numerator over the original denominator. \( \frac{21}{12} = 1 \frac{9}{12} \) - **Simplify the fraction (if possible):** \( \frac{9}{12} \) can be simplified by dividing both the numerator and the denominator by **3**. \( \frac{9 \div 3}{12 \div 3} = \frac{3}{4} \) So, \( \frac{21}{12} = 1 \frac{3}{4} \) ### 2. Convert \( \frac{7}{4} \) to a mixed number: - **Divide the numerator by the denominator:** \( 7 \div 4 = 1 \) with a **remainder** of **3**. - **Write the mixed number:** \( \frac{7}{4} = 1 \frac{3}{4} \) - **Simplify the fraction (if possible):** \( \frac{3}{4} \) is already in its simplest form. ### 3. Convert \( \frac{40}{12} \) to a mixed number: - **Divide the numerator by the denominator:** \( 40 \div 12 = 3 \) with a **remainder** of **4**. - **Write the mixed number:** \( \frac{40}{12} = 3 \frac{4}{12} \) - **Simplify the fraction (if possible):** \( \frac{4}{12} \) can be simplified by dividing both the numerator and the denominator by **4**. \( \frac{4 \div 4}{12 \div 4} = \frac{1}{3} \) So, \( \frac{40}{12} = 3 \frac{1}{3} \) ### **Summary of Conversions:** 1. \( \frac{21}{12} = 1 \frac{3}{4} \) 2. \( \frac{7}{4} = 1 \frac{3}{4} \) 3. \( \frac{40}{12} = 3 \frac{1}{3} \) --- **Practice Tip:** To convert an improper fraction to a mixed number: 1. **Divide** the numerator by the denominator. 2. **Write** the whole number part. 3. **Use** the remainder over the original denominator for the fractional part. 4. **Simplify** the fraction if possible. Keep practicing, and you'll get the hang of it in no time!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To convert an improper fraction to a mixed number, you divide the numerator by the denominator. The quotient becomes the whole number, while the remainder is written over the original denominator. For example, with \(\frac{21}{12}\), dividing 21 by 12 gives a quotient of 1 and a remainder of 9, so it becomes \(1 \frac{9}{12}\). Now let’s solve the others! For \(\frac{7}{4}\), dividing 7 by 4 gives a quotient of 1 and a remainder of 3, resulting in \(1 \frac{3}{4}\). Finally, for \(\frac{40}{12}\), dividing 40 by 12 gives a quotient of 3 and a remainder of 4, so it simplifies to \(3 \frac{4}{12}\), which can be further reduced to \(3 \frac{1}{3}\). So, the results are: 1. \(1 \frac{9}{12}\) 2. \(1 \frac{3}{4}\) 3. \(3 \frac{1}{3}\)

preguntas relacionadas

EXERCISES 4.1 Write cach expression in Exercises \( 1-14 \) in the form \( 2^{\text {ks }} \) or \( 3^{k t} \), for a suitable constant \( k \). (1) \( 4^{x},(\sqrt{3})^{x},\left(\frac{1}{3}\right)^{x} \) 2. \( 27^{x} \cdot(\sqrt[3]{2})^{x},\left(\frac{1}{8}\right)^{2} \) (3) \( 8^{2 x / 3}, 9^{3 x / 2}, 16^{-3 x / 4} \) 4. \( 9^{-x / 2}, 8^{4 x / 3}, 27^{-2 x / 3} \) (5.) \( \left(\frac{1}{4}\right)^{2 x},\left(\frac{1}{8}\right)^{-3 x},\left(\frac{1}{81}\right)^{x / 2} \) 6. \( \left(\frac{1}{9}\right)^{2 x},\left(\frac{1}{27}\right)^{x / 3},\left(\frac{1}{16}\right)^{-x / 2} \) 7. \( 6^{x} \cdot 3^{-x}, \frac{15^{x}}{5^{x}}, \frac{12^{x}}{2^{2 x}} \) 8. \( 7^{-x} \cdot 14^{x}, \frac{2^{x}}{6^{x}}, \frac{3^{2 x}}{18^{x}} \) 9. \( \frac{3^{4 x}}{3^{2 x}}, \frac{2^{5 x+1}}{2 \cdot 2^{-x}}, \frac{9^{-x}}{27^{-x / 3}} \) 10. \( \frac{2^{x}}{6^{x}}, \frac{3^{-5 x}}{3^{-2 x}}, \frac{16^{x}}{8^{-x}} \) 11. \( 2^{3 x} \cdot 2^{-5 x / 2}, 3^{2 x} \cdot\left(\frac{1}{3}\right)^{2 x / 3} \) 12. \( 2^{5 x / 4} \cdot\left(\frac{1}{2}\right)^{x}, 3^{-2 x} \cdot 3^{5 x / 2} \) (13.) \( \left(2^{-3 x} \cdot 2^{-2 x}\right)^{2 / 5},\left(9^{1 / 2} \cdot 9^{4}\right)^{x / 9} \) 14. \( \left(3^{-x} \cdot 3^{x / 5}\right)^{5},\left(16^{1 / 4} \cdot 16^{-3 / 4}\right)^{3 x} \) 15. Find a number \( b \) such that the function \( f(x)=3^{-2 x} \) can be written in the form \( f(x)=b^{x} \). 16. Find \( b \) so that \( 8^{-x / 3}=b^{x} \) for all \( x \). Solve the following equations for \( x \). (17) \( 5^{2 x}=5^{2} \) 18. \( 10^{-x}=10^{2} \) 19. \( (2.5)^{2 x+1}=(2.5)^{5} \) 20. \( (3.2)^{x-3}=(3.2)^{5} \) 21. \( 10^{1-x}=100 \) 22. \( 2^{4-x}=8 \) 23. \( 3(2.7)^{5 x}=8.1 \) 24. \( 4(2.7)^{2 x-1}=10.8 \) 25. \( \left(2^{x+1} \cdot 2^{-3}\right)^{2}=2 \) 26. \( \left(3^{2 x} \cdot 3^{2}\right)^{4}=3 \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad