Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
![](/pmw/light_bulb.png?etag=525fd69ac661e11754e2fc9f1b18a4ee)
![](/pmw/spiral_notepad.png?etag=abe3906b7558c543a7b30ba53a3b5a5b)
Beyond the Answer
To add the fractions, we first need a common denominator. Notice that \( 4x - 8 \) can be factored as \( 4(x - 2) \). Thus, the least common denominator (LCD) is \( 4(x - 2) \). Rewriting each fraction with the common denominator gives us: 1. For \(\frac{x}{x-2}\), we multiply the numerator and denominator by 4: \[ \frac{x \cdot 4}{(x - 2) \cdot 4} = \frac{4x}{4(x - 2)} \] 2. The second fraction is already expressed with the common denominator: \[ \frac{3}{4(x - 2)} \] Now we can combine the two fractions: \[ \frac{4x + 3}{4(x - 2)} \] Thus, the final result is: \[ \frac{4x + 3}{4(x - 2)} \]
![](/pmw/img-try-permium.webp)