through: \( (5,2) \), perp. to \( y=-\frac{5}{3} x-2 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the equation of the line that goes through the point \( (5, 2) \) and is perpendicular to the line given by the equation \( y = -\frac{5}{3} x - 2 \), we first need to determine the slope of the perpendicular line. The slope of the given line is \( -\frac{5}{3} \), so the slope of the perpendicular line will be the negative reciprocal, which is \( \frac{3}{5} \). Using the point-slope form of the equation of a line, we can plug in the point \( (5, 2) \) and the slope \( \frac{3}{5} \): \[ y - 2 = \frac{3}{5}(x - 5) \] Now, simplifying this equation: \[ y - 2 = \frac{3}{5}x - 3 \] Adding 2 to both sides gives: \[ y = \frac{3}{5}x - 1 \] The final equation of the line that passes through \( (5, 2) \) and is perpendicular to \( y = -\frac{5}{3} x - 2 \) is: \[ y = \frac{3}{5}x - 1 \]