Find the average rate of change of \( g(x)=-3 x+5 \) between the paint \( (-1,8) \) and \( (3,-4) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the average rate of change of the function \( g(x) = -3x + 5 \) between the points \( (-1, 8) \) and \( (3, -4) \), we first need to compute the function values at these \( x \)-coordinates. At \( x = -1 \): \[ g(-1) = -3(-1) + 5 = 3 + 5 = 8 \] At \( x = 3 \): \[ g(3) = -3(3) + 5 = -9 + 5 = -4 \] Now, we can use the formula for the average rate of change: \[ \text{Average rate of change} = \frac{g(3) - g(-1)}{3 - (-1)} = \frac{-4 - 8}{3 + 1} = \frac{-12}{4} = -3 \] So, the average rate of change of \( g(x) \) between these two points is \( -3 \).