Pregunta
upstudy study bank question image url

1. At closed cylinder has radios 3 cm and height 7 cm . Find its tatal surface area

Ask by Kirk Stewart. in Ghana
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The total surface area of the closed cylinder is approximately 188.5 cm².

Solución

To find the total surface area of a closed cylinder, we need to calculate the area of the two circular bases and the area of the curved surface. Given: - Radius of the cylinder = 3 cm - Height of the cylinder = 7 cm The formula for the total surface area of a closed cylinder is: \[ \text{Total Surface Area} = 2 \pi r^2 + 2 \pi r h \] Where: - \( r \) is the radius of the cylinder - \( h \) is the height of the cylinder Substitute the given values into the formula: \[ \text{Total Surface Area} = 2 \pi (3)^2 + 2 \pi (3) (7) \] Now, we can calculate the total surface area. Calculate the value by following steps: - step0: Calculate: \(2\pi \times 3^{2}+2\pi \times 3\times 7\) - step1: Multiply the terms: \(18\pi +2\pi \times 3\times 7\) - step2: Multiply the terms: \(18\pi +42\pi \) - step3: Collect like terms: \(\left(18+42\right)\pi \) - step4: Add the numbers: \(60\pi \) The total surface area of the closed cylinder is approximately 188.5 cm².

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the total surface area of a closed cylinder, we can use the formula: Total Surface Area = 2πr(h + r), where r is the radius and h is the height. Substituting the given values, we have r = 3 cm and h = 7 cm. Therefore, the total surface area is 2π(3)(7 + 3) = 2π(3)(10) = 60π cm², which is approximately 188.5 cm² when calculated. Now, remember to keep your units consistent! Using centimeters for both the radius and height is crucial for obtaining the correct measurement of surface area. A little oversight here, like using different units, can lead to a significantly incorrect total surface area calculation!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad