Pregunta
O Radicals and Quadratic Functions Solving a radical equation with a quadratic expression under the radical Solve for \( x \), where \( x \) is a real number. \[ x=\sqrt{x^{2}+x+6} \] If there is more than one solution, separate them with commas. If there is no solution, click on "No solution".
Ask by Haynes Edwards. in the United States
Feb 02,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
There is no real solution to the equation \( x = \sqrt{x^{2} + x + 6} \).
Solución
To solve the equation:
\[
x = \sqrt{x^{2} + x + 6}
\]
**Step 1: Determine the Domain**
The square root is defined only when the expression inside is non-negative:
\[
x^{2} + x + 6 \geq 0
\]
The quadratic \( x^{2} + x + 6 \) has a discriminant:
\[
\Delta = 1^2 - 4 \cdot 1 \cdot 6 = 1 - 24 = -23
\]
Since the discriminant is negative, \( x^{2} + x + 6 \) is always positive for all real numbers \( x \). Additionally, since the square root yields a non-negative value, \( x \) must satisfy:
\[
x \geq 0
\]
**Step 2: Square Both Sides**
\[
x^2 = x^{2} + x + 6
\]
Subtract \( x^2 \) from both sides:
\[
0 = x + 6 \implies x = -6
\]
**Step 3: Check for Extraneous Solutions**
The potential solution \( x = -6 \) does not satisfy the domain condition \( x \geq 0 \). Additionally, substituting \( x = -6 \) back into the original equation:
\[
-6 = \sqrt{(-6)^2 + (-6) + 6} \implies -6 = \sqrt{36} \implies -6 = 6
\]
This is a contradiction.
**Conclusion**
There are no real solutions to the equation.
**Answer:**
No solution
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve the equation \( x=\sqrt{x^{2}+x+6} \), we first square both sides to eliminate the square root: \[ x^2 = x^{2} + x + 6 \] Now, rearranging gives us: \[ 0 = x + 6 \] This simplifies to \( x = -6 \). To ensure this is a valid solution, we substitute back into the original equation: \[ -6 = \sqrt{(-6)^{2} + (-6) + 6} \] Calculating inside the square root: \[ = \sqrt{36 - 6 + 6} = \sqrt{36} = 6 \] Clearly, \(-6 \neq 6\). So, this does not hold. Thus, there is no real solution to the equation. **Final Answer: No solution.**
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium