Solve for the roots in simplest form using the quadratic formula: \[ 4 x^{2}-20 x=-13 \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve for the roots using the quadratic formula, we first need to rewrite the equation in standard form: \[ 4x^2 - 20x + 13 = 0. \] Here, \( a = 4 \), \( b = -20 \), and \( c = 13 \). Now, apply the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \] Calculating the discriminant: \[ b^2 - 4ac = (-20)^2 - 4 \cdot 4 \cdot 13 = 400 - 208 = 192. \] Now, substituting into the formula: \[ x = \frac{20 \pm \sqrt{192}}{8}. \] We can simplify \(\sqrt{192}\): \[ \sqrt{192} = \sqrt{64 \cdot 3} = 8\sqrt{3}. \] Now plug this back into the formula: \[ x = \frac{20 \pm 8\sqrt{3}}{8} = \frac{20}{8} \pm \frac{8\sqrt{3}}{8} = \frac{5}{2} \pm \sqrt{3}. \] Thus, the roots in simplest form are: \[ x = \frac{5}{2} + \sqrt{3} \quad \text{and} \quad x = \frac{5}{2} - \sqrt{3}. \]