A lead sphere has a mass of \( 1.20 \times 10^{4} \mathrm{~g} \), and its volume is \( 1.14 \times 10^{3} \mathrm{~cm}^{3} \). Calculate its density. Round your answer to 3 significant digits.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To calculate the density of the lead sphere, use the formula for density: \[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} \] First, convert the mass to grams and the volume to cubic centimeters: - Mass = \( 1.20 \times 10^{4} \, \text{g} \) - Volume = \( 1.14 \times 10^{3} \, \text{cm}^{3} \) Now, plug in the values: \[ \text{Density} = \frac{1.20 \times 10^{4} \, \text{g}}{1.14 \times 10^{3} \, \text{cm}^{3}} \approx 10.5263 \, \text{g/cm}^3 \] Rounding this to three significant digits, the density of the lead sphere is: \[ \text{Density} \approx 10.5 \, \text{g/cm}^3 \]