Pregunta
upstudy study bank question image url

An object is dropped from a tower, 1600 ft above the ground. The object's height above ground \( x \) seconds after the fall is \( s(x)=1600-16 \mathrm{x}^{2} \). About how long does it take the object to hit the ground? What is the object's velocity at the moment of impact? It takes \( \square \) sec for the object to hit the ground. (Round to the nearest tenth as needed.)

Ask by O'Quinn Bartlett. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

It takes 10.0 seconds for the object to hit the ground, and its velocity at impact is -320 ft/sec.

Solución

To solve the problem, we'll address both parts step by step. ### 1. Time to Hit the Ground **Given:** - Height function: \( s(x) = 1600 - 16x^2 \) - \( s(x) \) represents the height above the ground in feet. - \( x \) is the time in seconds. **To find:** The time \( x \) when the object hits the ground (\( s(x) = 0 \)). **Calculation:** \[ 1600 - 16x^2 = 0 \\ 16x^2 = 1600 \\ x^2 = \frac{1600}{16} \\ x^2 = 100 \\ x = \sqrt{100} \\ x = 10 \, \text{seconds} \] **Rounded to the nearest tenth:** \[ x = 10.0 \, \text{seconds} \] ### 2. Velocity at the Moment of Impact **Given:** - Height function: \( s(x) = 1600 - 16x^2 \) **To find:** The velocity \( v(x) \) at the moment of impact. **Calculation:** Velocity is the derivative of the position function with respect to time: \[ v(x) = \frac{ds}{dx} = \frac{d}{dx}(1600 - 16x^2) = -32x \] At \( x = 10 \) seconds (moment of impact): \[ v(10) = -32 \times 10 = -320 \, \text{ft/sec} \] **Interpretation:** - The negative sign indicates the direction of the velocity is downward. ### **Final Answer:** - **Time to hit the ground:** It takes **10.0 seconds** for the object to hit the ground. - **Velocity at impact:** The object's velocity at the moment of impact is **-320 ft/sec**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find how long it takes for the object to hit the ground, we need to set the height function \( s(x) \) equal to 0 (ground level): \[ 0 = 1600 - 16x^2 \] Rearranging gives: \[ 16x^2 = 1600 \] Dividing both sides by 16 results in: \[ x^2 = 100 \] Taking the square root of both sides, we find: \[ x = 10 \quad \text{(seconds)} \] Now, let's find the velocity at the moment of impact. The velocity function \( v(x) \) can be found by taking the derivative of the height function \( s(x) \): \[ v(x) = s'(x) = -32x \] Substituting \( x = 10 \): \[ v(10) = -32(10) = -320 \quad \text{(ft/sec)} \] So it takes **10 seconds** for the object to hit the ground, and its velocity at the moment of impact is **-320 ft/sec** (the negative sign indicates downward motion).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad