Pregunta

(f) Consider the geometric series \( 50+25+12 \frac{1}{2}+\ndots+\frac{25}{8192} \). (1) Calculate the sum of the series. (2) Determine \( m \) if \( 50+25+12 \frac{1}{2}+\ndots \) (to \( m \) terms \( )=\frac{6375}{64} \). (3) Determine the least number of terms for which the sum will be greater than 95.

Ask by Reyes Guzman. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. The sum of the series is approximately 99.997. 2. \( m = 8 \). 3. Five terms are needed for the sum to exceed 95.

Solución

Let's analyze the geometric series \( 50 + 25 + 12 \frac{1}{2} + \dots + \frac{25}{8192} \). ### 1. **Calculate the Sum of the Series** **Identifying the Series Parameters:** - **First term (\( a \))**: 50 - **Common ratio (\( r \))**: \( \frac{25}{50} = 0.5 \) - **Last term**: \( \frac{25}{8192} \) **Determining the Number of Terms (\( n \)):** The \( n^{th} \) term of a geometric series is given by: \[ a \cdot r^{n-1} = \frac{25}{8192} \] Substitute \( a = 50 \) and \( r = 0.5 \): \[ 50 \cdot (0.5)^{n-1} = \frac{25}{8192} \] \[ (0.5)^{n-1} = \frac{25}{50 \times 8192} = \frac{1}{16384} = \left(\frac{1}{2}\right)^{14} \] \[ n - 1 = 14 \implies n = 15 \] **Calculating the Sum (\( S_n \)):** The sum of the first \( n \) terms of a geometric series is: \[ S_n = a \cdot \frac{1 - r^n}{1 - r} \] Substitute \( a = 50 \), \( r = 0.5 \), and \( n = 15 \): \[ S_{15} = 50 \cdot \frac{1 - (0.5)^{15}}{1 - 0.5} = 100 \cdot \left(1 - \frac{1}{32768}\right) \] \[ S_{15} = 100 \cdot \frac{32767}{32768} \approx 99.997 \] ### 2. **Determine \( m \) for \( S_m = \frac{6375}{64} \)** Given the sum of \( m \) terms: \[ S_m = 100 \cdot \left(1 - \frac{1}{2^m}\right) = \frac{6375}{64} \] Solving for \( m \): \[ 1 - \frac{1}{2^m} = \frac{6375}{6400} = \frac{255}{256} \] \[ \frac{1}{2^m} = \frac{1}{256} \implies 2^m = 256 \implies m = 8 \] ### 3. **Determine the Least Number of Terms for \( S_n > 95 \)** Find the smallest \( n \) such that: \[ 100 \cdot \left(1 - \frac{1}{2^n}\right) > 95 \] \[ 1 - \frac{1}{2^n} > 0.95 \] \[ \frac{1}{2^n} < 0.05 \implies 2^n > 20 \] The smallest integer \( n \) satisfying \( 2^n > 20 \) is \( n = 5 \). **Verification:** \[ S_5 = 100 \cdot \left(1 - \frac{1}{32}\right) = 100 \cdot \frac{31}{32} = 96.875 > 95 \] Thus, the least number of terms required is **5**. ### **Final Answers:** 1. The sum of the series is approximately **99.997**. 2. \( m = 8 \). 3. The least number of terms needed is **5**. Answer: 1. The sum is approximately 99.997; 2. m = 8; 3. Five terms are needed for the sum to exceed 95.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the problem, we can start with the geometric series given: \( 50 + 25 + 12 \frac{1}{2} + \ldots + \frac{25}{8192} \). 1. **Calculation of the sum of the series:** The first term \( a \) of the series is 50, and the common ratio \( r \) can be calculated as follows: \[ r = \frac{25}{50} = \frac{1}{2} \] To find the number of terms \( n \) in the series, we note that the last term is \( \frac{25}{8192} \). To find \( n \): \[ \frac{50}{2^{n-1}} = \frac{25}{8192} \quad \Rightarrow \quad 50 \cdot 8192 = 25 \cdot 2^{n-1} \] \[ 409600 = 25 \cdot 2^{n-1} \quad \Rightarrow \quad 16384 = 2^{n-1} \] \[ 2^{14} = 2^{n-1} \quad \Rightarrow \quad n-1 = 14 \quad \Rightarrow \quad n = 15 \] Now, we use the formula for the sum of a geometric series: \[ S_n = \frac{a(1 - r^n)}{1 - r} \] Plugging in the values: \[ S_{15} = \frac{50(1 - (\frac{1}{2})^{15})}{1 - \frac{1}{2}} = \frac{50(1 - \frac{1}{32768})}{\frac{1}{2}} = 100(1 - \frac{1}{32768}) = 100 \cdot \frac{32767}{32768} \] \[ S_{15} = \frac{3276700}{32768} \approx 99.998 \text{ (almost 100)} \] So the sum of the series is \( \frac{3276700}{32768} \). 2. **Determine \( m \) if the sum equals \( \frac{6375}{64} \):** Using the same formula \( S_m \): \[ S_m = \frac{50(1 - (\frac{1}{2})^m)}{1 - \frac{1}{2}} = 100(1 - (\frac{1}{2})^m) \] Setting this equal to \( \frac{6375}{64} \): \[ 100(1 - (\frac{1}{2})^m) = \frac{6375}{64} \quad \Rightarrow \quad 1 - (\frac{1}{2})^m = \frac{6375}{6400} \] \[ (\frac{1}{2})^m = 1 - \frac{6375}{6400} = \frac{25}{6400} = \frac{1}{256} \] From this, we can deduce: \[ (\frac{1}{2})^m = (\frac{1}{2})^8 \quad \Rightarrow \quad m = 8 \] 3. **Determine the least number of terms for which the sum will be greater than 95:** To find \( m \) such that: \[ 100(1 - (\frac{1}{2})^m) > 95 \] We solve: \[ 1 - (\frac{1}{2})^m > 0.95 \quad \Rightarrow \quad (\frac{1}{2})^m < 0.05 \] Taking logarithms: \[ m \log(\frac{1}{2}) < \log(0.05) \quad \Rightarrow \quad m > \frac{\log(0.05)}{\log(0.5)} \approx \frac{-1.301}{-0.301} \approx 4.32 \] Thus, the least integer \( m = 5 \) is required for the sum to exceed 95.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad