QUESTION 31 Without using a calculator, find the exact value of \( \sin \theta \) if \( \cos \theta=\frac{2}{3}, \quad 0 \leq \theta<\frac{\pi}{2} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the exact value of \( \sin \theta \) given \( \cos \theta = \frac{2}{3} \), we can use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1. \] Substituting the value of \( \cos \theta \): \[ \sin^2 \theta + \left(\frac{2}{3}\right)^2 = 1. \] Calculating \( \left(\frac{2}{3}\right)^2 \): \[ \sin^2 \theta + \frac{4}{9} = 1. \] Now, subtract \( \frac{4}{9} \) from both sides: \[ \sin^2 \theta = 1 - \frac{4}{9} = \frac{9}{9} - \frac{4}{9} = \frac{5}{9}. \] Taking the square root, and since \( 0 \leq \theta < \frac{\pi}{2} \), we take the positive root: \[ \sin \theta = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3}. \] Thus, the exact value of \( \sin \theta \) is \[ \frac{\sqrt{5}}{3}. \]