Pregunta
upstudy study bank question image url

Type your answer If a car is driving up a hill at 50 miles per hour along an angle of \( 10^{\circ} \), what is the car's vertical speed? (Note: \( \sin \left(10^{\circ}\right) \approx 0.17 \) and \( \cos \left(10^{\circ}\right) \approx 0.98 \) )

Ask by Lyons Bolton. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The car's vertical speed is approximately 8.5 miles per hour.

Solución

To determine the car's **vertical speed** while driving up a hill, we can use the following approach: 1. **Understand the Components:** - The car's speed along the hill (the **hypotenuse** of the right triangle) is **50 miles per hour**. - The hill's incline angle is \(10^{\circ}\). 2. **Vertical Component Calculation:** - The **vertical speed** is the component of the car's velocity in the direction perpendicular to the horizontal plane. - This can be calculated using the sine function: \[ \text{Vertical Speed} = \text{Speed} \times \sin(\theta) \] where \(\theta = 10^{\circ}\). 3. **Plug in the Values:** \[ \text{Vertical Speed} = 50 \, \text{mph} \times \sin(10^{\circ}) \approx 50 \, \text{mph} \times 0.17 = 8.5 \, \text{mph} \] **Conclusion:** The car's vertical speed is **approximately 8.5 miles per hour**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the car's vertical speed, you can use some trigonometry! The vertical speed can be calculated by multiplying the speed of the car by the sine of the angle of the hill. So, you can use the formula: \[ \text{Vertical Speed} = \text{Speed} \times \sin(\text{Angle}) = 50 \, \text{mph} \times \sin(10^{\circ}) \approx 50 \, \text{mph} \times 0.17 \approx 8.5 \, \text{mph}. \] This means that as the car climbs the hill, it's gaining altitude at about 8.5 miles per hour! Now, if you're planning to apply this knowledge in a real-world scenario, think about how this vertical speed affects things like fuel efficiency or performance in hilly regions. For example, a car that has to climb hills at a steep angle will likely use more fuel compared to driving on flat terrain. Understanding vertical speed can also be crucial for scenarios such as off-roading or when evaluating a vehicle’s capabilities!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad