Simplify \( \left(\sqrt[5]{7 x^{6}}\right)^{10} \) \( [?] x \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify \( \left(\sqrt[5]{7 x^{6}}\right)^{10} \), we can start by rewriting the expression using exponent rules. The fifth root can be expressed as an exponent of \( \frac{1}{5} \): \[ \left(7 x^{6}\right)^{\frac{10}{5}} = \left(7 x^{6}\right)^{2} \] Next, we can distribute the exponent to both the constant and the variable: \[ = 7^{2} \cdot (x^{6})^{2} \] Calculating \( 7^{2} \): \[ = 49 \] And for \( (x^{6})^{2} \), we multiply the exponents: \[ = x^{12} \] Combining these two results, we get: \[ = 49 x^{12} \] So, the simplified expression is \( 49 x^{12} \).