Pregunta
upstudy study bank question image url

Simplify the following \( \frac{\text { expressions }}{\text { a) } \frac{x^{2}+5 x+6}{x^{2}-9} \div \frac{x^{2}-4}{x^{2}-5 x+6}} \) b) \( \frac{x}{x-2}-\frac{1}{x+2}+\frac{8}{4-x^{2}} \)

Ask by Ingram Smith. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a) \(1\) b) \(\dfrac{x + 3}{x + 2}\)

Solución

Let's simplify each expression step by step. --- ### **a)** \[ \frac{x^{2} + 5x + 6}{x^{2} - 9} \div \frac{x^{2} - 4}{x^{2} - 5x + 6} \] **Step 1: Rewrite the Division as Multiplication** Dividing by a fraction is the same as multiplying by its reciprocal: \[ \frac{x^{2} + 5x + 6}{x^{2} - 9} \times \frac{x^{2} - 5x + 6}{x^{2} - 4} \] **Step 2: Factor All Quadratic Expressions** - \(x^{2} + 5x + 6 = (x + 2)(x + 3)\) - \(x^{2} - 9 = (x - 3)(x + 3)\) *(Difference of squares)* - \(x^{2} - 5x + 6 = (x - 2)(x - 3)\) - \(x^{2} - 4 = (x - 2)(x + 2)\) *(Difference of squares)* **Step 3: Substitute the Factored Forms** \[ \frac{(x + 2)(x + 3)}{(x - 3)(x + 3)} \times \frac{(x - 2)(x - 3)}{(x - 2)(x + 2)} \] **Step 4: Cancel Common Factors** - \(x + 3\) cancels out. - \(x - 3\) cancels out. - \(x + 2\) cancels out. - \(x - 2\) cancels out. **Final Simplified Form:** \[ 1 \] --- ### **b)** \[ \frac{x}{x - 2} - \frac{1}{x + 2} + \frac{8}{4 - x^{2}} \] **Step 1: Factor the Denominator Where Possible** Notice that \(4 - x^{2}\) is a difference of squares: \[ 4 - x^{2} = (2 - x)(2 + x) = -(x - 2)(x + 2) \] **Step 2: Identify the Common Denominator** The denominators are \(x - 2\), \(x + 2\), and \(4 - x^{2}\). The common denominator is \((x - 2)(x + 2)\). **Step 3: Rewrite Each Fraction with the Common Denominator** \[ \frac{x}{x - 2} = \frac{x(x + 2)}{(x - 2)(x + 2)} \] \[ -\frac{1}{x + 2} = -\frac{(x - 2)}{(x - 2)(x + 2)} \] \[ \frac{8}{4 - x^{2}} = \frac{8}{-(x - 2)(x + 2)} = -\frac{8}{(x - 2)(x + 2)} \] **Step 4: Combine the Fractions** \[ \frac{x(x + 2) - (x - 2) - 8}{(x - 2)(x + 2)} \] **Step 5: Simplify the Numerator** \[ x(x + 2) - (x - 2) - 8 = x^2 + 2x - x + 2 - 8 = x^2 + x - 6 \] **Step 6: Factor the Numerator** \[ x^2 + x - 6 = (x - 2)(x + 3) \] **Step 7: Substitute Back and Cancel Common Factors** \[ \frac{(x - 2)(x + 3)}{(x - 2)(x + 2)} = \frac{x + 3}{x + 2} \quad \text{(assuming } x \neq 2, -2\text{)} \] **Final Simplified Form:** \[ \frac{x + 3}{x + 2} \] --- **Summary of Simplified Expressions:** - **a)** \(1\) - **b)** \(\dfrac{x + 3}{x + 2}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify the given expressions, we'll tackle them one at a time. For part (a): Starting with the expression \( \frac{x^{2}+5x+6}{x^{2}-9} \div \frac{x^{2}-4}{x^{2}-5x+6} \), we can rewrite the division as multiplication by the reciprocal: \[ \frac{x^{2}+5x+6}{x^{2}-9} \times \frac{x^{2}-5x+6}{x^{2}-4} \] Next, let's factor these polynomials. 1. \( x^2 + 5x + 6 = (x+2)(x+3) \) 2. \( x^2 - 9 = (x-3)(x+3) \) 3. \( x^2 - 4 = (x-2)(x+2) \) 4. \( x^2 - 5x + 6 = (x-2)(x-3) \) Rewriting the expression with these factors gives: \[ \frac{(x+2)(x+3)}{(x-3)(x+3)} \times \frac{(x-2)(x-3)}{(x-2)(x+2)} \] Now, we can cancel out the common factors: - The \( (x+2) \) cancels. - The \( (x-2) \) cancels. - The \( (x+3) \) cancels. This leaves us with: \[ \frac{(x-3)}{(x-3)} = 1 \quad \text{(as long as } x \neq 3 \text{)} \] For part (b): We start with the expression \[ \frac{x}{x-2} - \frac{1}{x+2} + \frac{8}{4-x^{2}} \] Let's factor \( 4 - x^2 \) first, which is a difference of squares: \[ 4 - x^2 = (2-x)(2+x) \] Now rewriting the entire expression, we bring everything under a common denominator which is \( (x-2)(x+2)(2-x)(2+x) \). Transform \( \frac{8}{4-x^2} \) as: \[ \frac{8}{(2-x)(2+x)} = \frac{-8}{(x-2)(2+x)} \quad \text{(since } 2-x = -(x-2) \text{)} \] Now, applying the common denominator: 1. For \( \frac{x}{x-2} \), multiply by \( (x+2)(2-x) \): \[ \frac{x((x+2)(2-x))}{(x-2)(x+2)(2-x)(2+x)} \] 2. For \( -\frac{1}{x+2} \), multiply by \( (x-2)(2-x) \): \[ -\frac{(x-2)(2-x)}{(x-2)(x+2)(2-x)(2+x)} \] 3. For \( -\frac{8}{4-x^2} \) (now written correctly): \[ -\frac{8(x-2)}{(x-2)(x+2)(2-x)(2+x)} \] Combining gives: \[ \frac{x((x+2)(2-x)) - (x-2)(2-x) - 8(x-2)}{(x-2)(x+2)(2-x)(2+x)} \] Now, simplifying the numerator will lead to the final expression. Be careful with errors when arranging terms, and once simplified, ensure to factor or cancel where possible.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad