Pregunta
upstudy study bank question image url

Find the exact value of each of the remaining tigonometrie functions of 0 . Rationalize denominatore when applicable. \( \tan 0=\frac{4}{3} \), given that 0 is in quadrant । (Simplify your answer, including any radicals. Use integers of fractions for any numbers in the expression.) II. The function la undefined, Select the correct oholee below and, if necessary, fill in the answer box to complete your choice. A. \( \operatorname{coc} 0=\frac{5}{4} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \sec 0=\frac{5}{3} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \cot 0= \) \( \square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. View an example Get more help * MacBook Air

Ask by Sanders Goodwin. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \begin{align*} \csc 0 &= \frac{5}{4} \\ \sec 0 &= \frac{5}{3} \\ \cot 0 &= \frac{3}{4} \\ \end{align*} \] All functions are defined.

Solución

Given that \(\tan \theta = \frac{4}{3}\) and \(\theta\) is in the **first quadrant**, we can determine the remaining trigonometric functions using a right triangle approach. ### Step 1: Determine the Sides of the Triangle Since \(\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{4}{3}\), we can consider: - **Opposite side**: 4 - **Adjacent side**: 3 Using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] ### Step 2: Find the Remaining Trigonometric Functions 1. **Cosecant (\(\csc \theta\))**: \[ \csc \theta = \frac{\text{Hypotenuse}}{\text{Opposite}} = \frac{5}{4} \] **Answer**: \[ \boxed{\csc \theta = \frac{5}{4}} \] **Choice**: A. \( \csc \theta = \frac{5}{4} \) 2. **Secant (\(\sec \theta\))**: \[ \sec \theta = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{5}{3} \] **Answer**: \[ \boxed{\sec \theta = \frac{5}{3}} \] **Choice**: A. \( \sec \theta = \frac{5}{3} \) 3. **Cotangent (\(\cot \theta\))**: \[ \cot \theta = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{3}{4} \] **Answer**: \[ \boxed{\cot \theta = \frac{3}{4}} \] **Choice**: A. \( \cot \theta = \frac{3}{4} \) ### Summary of All Trigonometric Functions \[ \begin{align*} \sin \theta &= \frac{4}{5} \\ \cos \theta &= \frac{3}{5} \\ \tan \theta &= \frac{4}{3} \\ \csc \theta &= \frac{5}{4} \\ \sec \theta &= \frac{5}{3} \\ \cot \theta &= \frac{3}{4} \\ \end{align*} \] All functions are **defined** in the first quadrant, so there is no need to select the option stating the function is undefined.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the exact values of the remaining trigonometric functions given that \(\tan \theta = \frac{4}{3}\) and \(\theta\) is in Quadrant II, we can use the Pythagorean identity to find \(\sin \theta\) and \(\cos \theta\). Given \(\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{4}{3}\), we can think of a right triangle with opposite side 4 and adjacent side 3. The hypotenuse can be calculated using the Pythagorean theorem: \[ \text{hypotenuse} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5. \] From the triangle, we get \(\sin \theta = \frac{4}{5}\) and since \(\theta\) is in Quadrant II, \(\cos \theta = -\frac{3}{5}\). Now we can find the other trigonometric functions: 1. \(\csc 0 = \frac{1}{\sin 0} = \frac{5}{4}\) (Choice A) 2. \(\sec 0 = \frac{1}{\cos 0} = -\frac{5}{3}\) (Choice A) 3. \(\cot 0 = \frac{1}{\tan 0} = \frac{3}{4}\) (Choice A) With all values computed, now we can fill in the choices accordingly!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad