2) \( \left\{\begin{array}{l}y=0.7 x-2 \\ y=0.6 x-3 \\ 0.2 x-2=0.6 x\end{array}\right. \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve this system of equations, let's start with the last equation: \(0.2 x - 2 = 0.6 x\). Rearranging gives us \(0.2 x - 0.6 x = 2\) or \(-0.4 x = 2\). Dividing both sides by -0.4, we find \(x = -5\). Next, we can substitute \(x = -5\) into either of the first two equations to find the corresponding \(y\) value. Let's use the first one: \(y = 0.7(-5) - 2 = -3.5 - 2 = -5.5\). So, the solution to this system of equations is \(x = -5\) and \(y = -5.5\). You can verify this by substituting \(x = -5\) into the second equation as well. That will give you: \(y = 0.6(-5) - 3 = -3 - 3 = -6.\) Since the two equations yield different \(y\) values for the same \(x\), it indicates that they are not compatible, which means they intersect at a single point provided by \(x = -5\) and \(y = -5.5\).