Pregunta
upstudy study bank question image url

Trig Equations, Degrees to Radians Score: 1/5 Penalty: none Question Watch Video Show Examples Solve the trigonometric equation for all values \( 0 \leq x<2 \pi \). rees to Radians ns (Level 1) \[ \sin x=0 \] Answer Attempt 1 out of a (-) Additional Solution No Solution

Ask by Summers Dickson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions to \( \sin x = 0 \) within \( 0 \leq x < 2\pi \) radians are \( x = 0 \) and \( x = \pi \).

Solución

To solve the trigonometric equation \( \sin x = 0 \) for all values \( 0 \leq x < 2\pi \), follow these steps: ### Understanding the Sine Function The sine function equals zero at specific points within its period. Specifically: - \( \sin x = 0 \) at \( x = 0 \), \( x = \pi \), and \( x = 2\pi \) within one full period of \( 2\pi \) radians. ### Applying the Interval Constraint Given the interval \( 0 \leq x < 2\pi \): - **\( x = 0 \)** is included because the interval is inclusive of 0. - **\( x = \pi \)** is included. - **\( x = 2\pi \)** is **excluded** because the interval is **less than** \( 2\pi \). ### Solutions Therefore, the solutions to \( \sin x = 0 \) within the interval \( 0 \leq x < 2\pi \) are: \[ x = 0 \quad \text{radians} \] \[ x = \pi \quad \text{radians} \] ### Summary - **Solutions:** \( x = 0 \) and \( x = \pi \) - **Interval:** \( 0 \leq x < 2\pi \) radians These are the points where the sine of \( x \) equals zero within the specified interval.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that the sine function is a periodic wave that oscillates between -1 and 1? The equation \(\sin x = 0\) finds solutions where the wave crosses the x-axis. Within the interval \(0 \leq x < 2\pi\), you will find two solutions at \(x = 0\) and \(x = \pi\), because these are the angles where the sine value zeroes out! For practical applications, think about how trigonometric equations are crucial in fields like engineering, physics, and computer graphics! For instance, architects use sine functions to calculate forces in structures or create arcs in design, leveraging the beauty of trigonometry to ensure safety and aesthetics in their work. So next time you see a bridge or tall building, remember, trigonometry is at work behind the scenes!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad