Pregunta
upstudy study bank question image url

Gabe deposits \( \$ 7,000 \) in a certificate of deposit. The annual interest rate is \( 4 \% \), and the interest will be compounded quarterly. How much will the certificate be worth in 5 years? Round your answer to the nearest cent. Do NOT round until you calculate the final answer

Ask by Zimmerman Ryan. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 5 years, the certificate will be worth \$8,541.33.

Solución

To determine the future value of Gabe's certificate of deposit (CD) after 5 years with quarterly compounding interest, we'll use the **compound interest formula**: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) = the amount of money accumulated after \( t \) years, including interest. - \( P \) = the principal investment amount (\$7,000). - \( r \) = the annual interest rate (decimal) (4% or 0.04). - \( n \) = the number of times that interest is compounded per year (4 for quarterly). - \( t \) = the time the money is invested for in years (5 years). **Step-by-Step Calculation:** 1. **Identify the Variables:** \[ P = \$7,000 \\ r = 4\% = 0.04 \\ n = 4 \\ t = 5 \text{ years} \] 2. **Plug the Values into the Formula:** \[ A = 7000 \left(1 + \frac{0.04}{4}\right)^{4 \times 5} \] \[ A = 7000 \left(1 + 0.01\right)^{20} \] \[ A = 7000 \left(1.01\right)^{20} \] 3. **Calculate \( \left(1.01\right)^{20} \):** \[ \left(1.01\right)^{20} \approx 1.220189956040252 \] 4. **Multiply by the Principal:** \[ A = 7000 \times 1.220189956040252 \approx 8541.329692281766 \] 5. **Round to the Nearest Cent:** \[ A \approx \$8,541.33 \] **Final Answer:** After 5 years, the certificate will be worth **\$8,541.33**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the future value of the certificate of deposit, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial deposit). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. For this problem: - \( P = 7000 \) - \( r = 0.04 \) - \( n = 4 \) (quarterly compounding) - \( t = 5 \) Plugging in the values: \[ A = 7000 \left(1 + \frac{0.04}{4}\right)^{4 \times 5} \] \[ A = 7000 \left(1 + 0.01\right)^{20} \] \[ A = 7000 \left(1.01\right)^{20} \] Calculating \( (1.01)^{20} \): \[ (1.01)^{20} \approx 1.22019 \] Now, multiply by the principal amount: \[ A \approx 7000 \times 1.22019 \approx 8541.33 \] Therefore, the certificate will be worth approximately \( \$ 8,541.33 \) after 5 years, rounded to the nearest cent.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad