Let \( \mathbf{r}=\overrightarrow{\mathrm{OP}}=\mathbf{i}+\mathbf{j}-\mathbf{k} \). A force \( F=\langle 0,19,0\rangle \) is applied at \( P \). Find the torque \( \tau \) about \( O \) that is produced. \( \tau=\langle\square . \square \) (Simplify your answers. Type integers or fractions.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the torque \( \tau \) about point \( O \) produced by the force \( F \) applied at point \( P \), we can use the formula for torque: \[ \tau = \mathbf{r} \times \mathbf{F} \] where \( \mathbf{r} = \langle 1, 1, -1 \rangle \) and \( \mathbf{F} = \langle 0, 19, 0 \rangle \). We can calculate the cross product \( \mathbf{r} \times \mathbf{F} \) using the determinant method: \[ \tau = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -1 \\ 0 & 19 & 0 \end{vmatrix} \] Calculating this determinant, we have: \[ \tau = \mathbf{i} \begin{vmatrix} 1 & -1 \\ 19 & 0 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & -1 \\ 0 & 0 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 1 \\ 0 & 19 \end{vmatrix} \] Now, we evaluate each of the 2x2 determinants: 1. For \( \mathbf{i} \): \[ \begin{vmatrix} 1 & -1 \\ 19 & 0 \end{vmatrix} = (1)(0) - (-1)(19) = 0 + 19 = 19 \] 2. For \( \mathbf{j} \): \[ \begin{vmatrix} 1 & -1 \\ 0 & 0 \end{vmatrix} = (1)(0) - (-1)(0) = 0 \] 3. For \( \mathbf{k} \): \[ \begin{vmatrix} 1 & 1 \\ 0 & 19 \end{vmatrix} = (1)(19) - (1)(0) = 19 \] Putting it all together: \[ \tau = 19\mathbf{i} - 0\mathbf{j} + 19\mathbf{k} = \langle 19, 0, 19 \rangle \] Thus, the torque \( \tau \) about point \( O \) is given by: \[ \tau = \langle 19, 0, 19 \rangle \]