Pregunta
upstudy study bank question image url

Find the exact value of each of the following under the given conditions. \( \sin \alpha=\frac{7}{25}, 0<\alpha<\frac{\pi}{2} ; \cos \beta=\frac{8 \sqrt{89}}{89},-\frac{\pi}{2}<\beta<0 \) \( \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array} \) \( \begin{array}{l}\text { (a) } \sin (\alpha+\beta)=\square \\ \text { (Type an exact answer using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression. Simplify your answer.) }\end{array} \)

Ask by Herrera Simpson. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\(\sin(\alpha + \beta) = -\frac{64\sqrt{89}}{2225}\)

Solución

To find \(\sin(\alpha + \beta)\) given: - \(\sin \alpha = \frac{7}{25}\) with \(0 < \alpha < \frac{\pi}{2}\), and - \(\cos \beta = \frac{8\sqrt{89}}{89}\) with \(-\frac{\pi}{2} < \beta < 0\), we can use the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] **Step 1: Find \(\cos \alpha\)** \[ \sin^2 \alpha + \cos^2 \alpha = 1 \\ \left(\frac{7}{25}\right)^2 + \cos^2 \alpha = 1 \\ \frac{49}{625} + \cos^2 \alpha = 1 \\ \cos^2 \alpha = 1 - \frac{49}{625} = \frac{576}{625} \\ \cos \alpha = \frac{24}{25} \quad (\text{since } \alpha \text{ is in the first quadrant}) \] **Step 2: Find \(\sin \beta\)** \[ \cos^2 \beta + \sin^2 \beta = 1 \\ \left(\frac{8\sqrt{89}}{89}\right)^2 + \sin^2 \beta = 1 \\ \frac{64 \times 89}{89^2} + \sin^2 \beta = 1 \\ \frac{64}{89} + \sin^2 \beta = 1 \\ \sin^2 \beta = 1 - \frac{64}{89} = \frac{25}{89} \\ \sin \beta = -\frac{5}{\sqrt{89}} = -\frac{5\sqrt{89}}{89} \quad (\text{since } \beta \text{ is in the fourth quadrant}) \] **Step 3: Apply the sine addition formula** \[ \sin(\alpha + \beta) = \left(\frac{7}{25}\right)\left(\frac{8\sqrt{89}}{89}\right) + \left(\frac{24}{25}\right)\left(-\frac{5\sqrt{89}}{89}\right) \\ = \frac{56\sqrt{89}}{2225} - \frac{120\sqrt{89}}{2225} \\ = \frac{-64\sqrt{89}}{2225} \] **Final Answer:** \[ \sin(\alpha + \beta) = -\frac{64\, \sqrt{89}}{2225} \] Answer: \(\sin(\alpha + \beta) = -\,\dfrac{64\,\sqrt{89}}{2225}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the requested values, we first need to determine the cosine of angle \( \alpha \) and the sine of angle \( \beta \). ### Step 1: Find \( \cos \alpha \) Given \( \sin \alpha = \frac{7}{25} \): \[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{7}{25}\right)^2 = 1 - \frac{49}{625} = \frac{576}{625} \] Thus, \[ \cos \alpha = \sqrt{\frac{576}{625}} = \frac{24}{25} \] ### Step 2: Find \( \sin \beta \) Given \( \cos \beta = \frac{8 \sqrt{89}}{89} \) (and since \( \beta \) is in the fourth quadrant, sine is negative): \[ \sin^2 \beta + \cos^2 \beta = 1 \implies \sin^2 \beta = 1 - \left(\frac{8\sqrt{89}}{89}\right)^2 \] Calculating \( \left(\frac{8\sqrt{89}}{89}\right)^2 \): \[ = \frac{64 \cdot 89}{7921} = \frac{5696}{7921} \] So, \[ \sin^2 \beta = 1 - \frac{5696}{7921} = \frac{7921 - 5696}{7921} = \frac{3225}{7921} \] Thus, \[ \sin \beta = -\sqrt{\frac{3225}{7921}} = -\frac{\sqrt{3225}}{89} \] We can simplify \( \sqrt{3225} \) as: \[ \sqrt{3225} = \sqrt{25 \cdot 129} = 5\sqrt{129} \] So, \[ \sin \beta = -\frac{5\sqrt{129}}{89} \] ### Step 3: Calculate \( \sin(\alpha + \beta) \) Using the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Substituting in our known values: \[ \sin(\alpha + \beta) = \left(\frac{7}{25} \cdot \frac{8\sqrt{89}}{89}\right) + \left(\frac{24}{25} \cdot -\frac{5\sqrt{129}}{89}\right) \] Calculating each term: \[ = \frac{56\sqrt{89}}{2225} - \frac{120\sqrt{129}}{2225} \] Combining gives: \[ \sin(\alpha + \beta) = \frac{56\sqrt{89} - 120\sqrt{129}}{2225} \] ### Answers: \[ \text{(a) } \sin (\alpha + \beta) = \frac{56\sqrt{89} - 120\sqrt{129}}{2225} \] To find the remaining values: ### Step 4: Calculate \( \cos(\alpha + \beta) \) Using the cosine addition formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Substituting in known values: \[ \cos(\alpha + \beta) = \left(\frac{24}{25} \cdot \frac{8\sqrt{89}}{89}\right) - \left(\frac{7}{25} \cdot -\frac{5\sqrt{129}}{89}\right) \] Calculating: \[ = \frac{192\sqrt{89}}{2225} + \frac{35\sqrt{129}}{2225} \] So: \[ \cos(\alpha + \beta) = \frac{192\sqrt{89} + 35\sqrt{129}}{2225} \] ### Step 5: Calculate \( \sin(\alpha - \beta) \) Using the sine subtraction formula: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] Substituting gives: \[ \sin(\alpha - \beta) = \left(\frac{7}{25} \cdot \frac{8\sqrt{89}}{89}\right) - \left

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad