Pregunta
upstudy study bank question image url

st \( 1(4.2,4.5-4.9) \quad \) Test Score: \( 0 \%, 0 \) of 113 points A rectangula tank with a square base, an open top, and a volume of \( 16,384 \mathrm{ft}^{3} \) is to be constructed of sheet steel. Find the dimensions of the tank that has the minimum surface area 0 of 8

Ask by Schwartz Summers. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To minimize the surface area of a rectangular tank with a square base and an open top, the optimal dimensions are: - **Base:** 32 feet by 32 feet - **Height:** 16 feet

Solución

To find the dimensions of the rectangular tank with a square base, an open top, and a volume of \(16,384 \ \text{ft}^3\) that minimizes the surface area, follow these steps: ### 1. Define Variables - Let \( x \) be the length of one side of the square base (in feet). - Let \( h \) be the height of the tank (in feet). ### 2. Volume Constraint The volume \( V \) of the tank is given by: \[ V = x^2 \cdot h = 16,384 \ \text{ft}^3 \] Solving for \( h \): \[ h = \frac{16,384}{x^2} \] ### 3. Surface Area to Minimize Since the tank has an open top, the surface area \( S \) consists of the base and the four sides: \[ S = x^2 + 4x \cdot h \] Substitute \( h \) from the volume constraint: \[ S = x^2 + 4x \left( \frac{16,384}{x^2} \right) = x^2 + \frac{65,536}{x} \] ### 4. Optimization To find the value of \( x \) that minimizes \( S \), take the derivative of \( S \) with respect to \( x \) and set it to zero: \[ \frac{dS}{dx} = 2x - \frac{65,536}{x^2} = 0 \] Solving for \( x \): \[ 2x = \frac{65,536}{x^2} \\ 2x^3 = 65,536 \\ x^3 = 32,768 \\ x = \sqrt[3]{32,768} \\ x = 32 \ \text{ft} \] ### 5. Find \( h \) Using the volume constraint: \[ h = \frac{16,384}{32^2} = \frac{16,384}{1,024} = 16 \ \text{ft} \] ### 6. Conclusion The dimensions that minimize the surface area are: - **Base:** \( 32 \ \text{ft} \times 32 \ \text{ft} \) - **Height:** \( 16 \ \text{ft} \) These dimensions ensure the tank has the minimum possible surface area while maintaining the required volume. **Answer:** A square base 32 ft on a side and height 16 ft. • Base: 32 ft × 32 ft • Height: 16 ft

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To minimize the surface area of a rectangular tank with a square base, we start by defining the variables: let \( x \) be the length of each side of the square base, and let \( h \) be the height of the tank. The volume \( V \) is given by \( V = x^2h \), and for a volume of \( 16,384 \, \text{ft}^3 \), we have: \[ x^2h = 16,384 \implies h = \frac{16,384}{x^2} \] Now, the surface area \( S \) of the open-top tank can be expressed as: \[ S = x^2 + 4xh \] Substituting \( h \) into the surface area formula gives: \[ S = x^2 + 4x\left(\frac{16,384}{x^2}\right) = x^2 + \frac{65,536}{x} \] To minimize \( S \), we can take the derivative with respect to \( x \), set it to zero, and solve for \( x \). After simplifying, you'll find the optimal dimensions. To check the solution’s validity and see real-world applications, consider that the design principles behind this tank apply to various storage solutions, from agricultural tanks to industrial containers. Efficient use of materials and space is crucial in manufacturing, where minimizing costs while maximizing functionality leads to significant gains!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad