Pregunta
upstudy study bank question image url

Given the function \( f(x)=\int_{1}^{x}\left(t^{4}-12 t^{3}-28 t^{2}\right) d t \), determine all \( x- \) values, if any, for which \( f \) has a relative minimum.

Ask by Carroll Washington. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) \) has a relative minimum at \( x = 14 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To determine the `x`-values for which the function \( f(x) \) has a relative minimum, you first need to find the derivative of the function. According to the Fundamental Theorem of Calculus, the derivative is given by: \[ f'(x) = t^{4} - 12 t^{3} - 28 t^{2} \bigg|_{t=x} = x^{4} - 12 x^{3} - 28 x^{2} \] Next, set the derivative equal to zero to find critical points: \[ x^{4} - 12 x^{3} - 28 x^{2} = 0 \] Factor out \( x^{2} \): \[ x^{2}(x^{2} - 12 x - 28) = 0 \] From here, \( x^{2} = 0 \) gives \( x = 0 \), and for \( x^{2} - 12 x - 28 = 0 \), you can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{12 \pm \sqrt{144 + 112}}{2} = \frac{12 \pm \sqrt{256}}{2} = \frac{12 \pm 16}{2} \] This results in: 1. \( x = 14 \) 2. \( x = -2 \) Now, to determine if these points are relative minima, you can use the second derivative test. Calculate \( f''(x) \): \[ f''(x) = 4x^{3} - 36x^{2} - 56x \] Evaluate \( f''(x) \) at the critical points: 1. At \( x = 0 \): \[ f''(0) = 4(0)^{3} - 36(0)^{2} - 56(0) = 0 \quad (\text{Inconclusive}) \] 2. At \( x = 14 \): \[ f''(14) = 4(14)^{3} - 36(14)^{2} - 56(14) \] Calculate term by term, and if \( f''(14) > 0 \), \( x = 14 \) is a local minimum. 3. At \( x = -2 \): \[ f''(-2) = 4(-2)^{3} - 36(-2)^{2} - 56(-2) \] Confirm \( f''(-2) < 0 \) shows \( x = -2 \) is a local maximum. Thus, the only critical point \( x = 14 \) would be where \( f(x) \) has a relative minimum. ### Conclusion: Therefore, the \( x \)-value for which \( f \) has a relative minimum is \( x = 14 \). --- History shows that calculus was formalized in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz, who independently developed the concepts of differentiation and integration. Their principles laid the groundwork for understanding how functions behave and change over time, forming the backbone of classical mechanics. In the real world, finding relative minima is crucial in fields like economics for cost minimization, engineering for optimizing material usage, or even in machine learning for minimizing the error of predictive models. Understanding these points helps in making strategic decisions based on data analysis and optimization.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad