Pregunta
upstudy study bank question image url

Question 1 of 18, Step 1 of 1 Growing linearly, the balance owed on your credit card doubles from \( \$ 800 \) to \( \$ 1600 \) in 6 months. If the balance were growing according to the exponential function \( f(x)=800(1+0.122)^{x} \) where \( x \) represents the number of months, what would the balance be after 6 months? Round your answer to the nearest cent. Answer How to enter your answer (opens in new window) Keyboard Shortrus Kist

Ask by Wagner Reeves. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 6 months, the balance would be \$1,596.08.

Solución

To determine the balance after 6 months using the exponential growth model \( f(x) = 800(1 + 0.122)^x \), where \( x \) represents the number of months, follow these steps: ### Step 1: Identify the Given Information - **Initial Balance (\( f(0) \))**: \$800 - **Growth Rate per Month**: 12.2% (or 0.122 in decimal form) - **Time (\( x \))**: 6 months ### Step 2: Apply the Exponential Growth Formula The exponential growth formula is: \[ f(x) = 800(1 + 0.122)^x \] Plugging in \( x = 6 \): \[ f(6) = 800(1 + 0.122)^6 = 800(1.122)^6 \] ### Step 3: Calculate \( (1.122)^6 \) Let's compute \( (1.122)^6 \): 1. **First Month:** \[ 1.122^1 = 1.122 \] 2. **Second Month:** \[ 1.122^2 = 1.122 \times 1.122 \approx 1.258884 \] 3. **Third Month:** \[ 1.122^3 = 1.258884 \times 1.122 \approx 1.412477 \] 4. **Fourth Month:** \[ 1.122^4 = 1.412477 \times 1.122 \approx 1.5848 \] 5. **Fifth Month:** \[ 1.122^5 = 1.5848 \times 1.122 \approx 1.7781 \] 6. **Sixth Month:** \[ 1.122^6 = 1.7781 \times 1.122 \approx 1.9951 \] So, \[ (1.122)^6 \approx 1.9951 \] ### Step 4: Calculate the Final Balance Multiply the result by the initial balance: \[ f(6) = 800 \times 1.9951 \approx 1596.08 \] ### Step 5: Round to the Nearest Cent \[ f(6) \approx \$1596.08 \] ### **Answer** After 6 months, the balance would be **\$1,596.08**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the balance owed on your credit card after 6 months using the exponential function \( f(x) = 800(1 + 0.122)^x \), just plug in \( x = 6 \): \[ f(6) = 800(1 + 0.122)^6 \] Calculating, we get: \[ f(6) = 800(1.122)^6 \approx 800(1.888) \approx 1510.60 \] So after 6 months, the balance would be approximately \$1510.60. And don't forget, by choosing this model, you're reflecting a kind of growth that compounds over time, which mirrors how many debts pile up quicker than we expect!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad