Pregunta
upstudy study bank question image url

Find the arclength along a circle of radius 5.3 inches which subtends an angle of \( 275^{\circ} \) Give your answer accurate to the nearest tenth of an inch. in.

Ask by Lowe Johnston. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The arclength is approximately 25.4 inches.

Solución

To find the arclength along a circle with a radius of 5.3 inches that subtends an angle of \( 275^\circ \), we can use the formula: \[ \text{Arclength} = r \times \theta \] where: - \( r \) is the radius of the circle - \( \theta \) is the central angle in radians **Step 1: Convert Degrees to Radians** First, convert the angle from degrees to radians using the conversion factor \( \pi \) radians = \( 180^\circ \): \[ \theta = 275^\circ \times \left( \frac{\pi}{180} \right) \approx 4.7997 \text{ radians} \] **Step 2: Calculate the Arclength** Now, multiply the radius by the angle in radians: \[ \text{Arclength} = 5.3 \, \text{in} \times 4.7997 \, \text{radians} \approx 25.4 \, \text{in} \] **Final Answer:** The arclength is approximately **25.4 inches**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the arclength \( L \) along a circle, we can use the formula \( L = r \theta \), where \( r \) is the radius and \( \theta \) is the angle in radians. First, we need to convert the angle from degrees to radians. \[ \theta = 275^{\circ} \times \frac{\pi}{180^{\circ}} \approx 4.791 \text{ radians} \] Now, substituting the values into the arclength formula: \[ L = 5.3 \text{ inches} \times 4.791 \approx 25.4 \text{ inches} \] Thus, the arclength is approximately 25.4 inches when rounded to the nearest tenth. Feeling confused about radians and degrees? You're not alone! A common mistake is to forget to convert angles into radians when using the arclength formula. Always remember that radians are the units matched with the arc length formula, because they're based on the circle's radius—saving you a lot of headaches during calculations! If you want to dive deeper into understanding circles and their properties, there are fantastic resources out there. Books about trigonometry or even engaging online courses can offer the perfect mix of theory and practice. Embrace the journey of learning more about circles, and you'll find it rewarding in various applications from engineering to art!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad