Pregunta
upstudy study bank question image url

1. If there are 7 distinct points on a plane with no three of which are collinear, how nany different polygons can be possibly formed?

Ask by Park Greene. in the Philippines
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You can form 99 different polygons with 7 distinct points on a plane where no three points are collinear.

Solución

To determine the number of different polygons that can be formed from 7 distinct points on a plane, where no three points are collinear, we can follow these steps: 1. **Understand the Basics:** - A polygon requires at least 3 vertices (points). - Since no three points are collinear, any set of 3 or more points will form a valid polygon. 2. **Calculate the Total Number of Subsets:** - The total number of subsets of 7 points is \(2^7 = 128\). This includes all possible combinations, ranging from selecting none of the points to all 7 points. 3. **Exclude Invalid Subsets:** - **Subsets with fewer than 3 points cannot form a polygon.** - Number of ways to choose 0 points: \(\binom{7}{0} = 1\) - Number of ways to choose 1 point: \(\binom{7}{1} = 7\) - Number of ways to choose 2 points: \(\binom{7}{2} = 21\) 4. **Subtract the Invalid Cases:** \[ \text{Total valid polygons} = 2^7 - \left(\binom{7}{0} + \binom{7}{1} + \binom{7}{2}\right) = 128 - (1 + 7 + 21) = 128 - 29 = 99 \] **Therefore, you can form 99 different polygons with the given 7 points.** **Answer:** 99

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the number of different polygons that can be formed from 7 distinct points on a plane where no three points are collinear, we can use the concept of combinations. A polygon requires at least 3 points to form. Therefore, we can form polygons using 3, 4, 5, 6, or all 7 points. The total number of polygons is the sum of combinations of 7 points taken 3 at a time, 4 at a time, 5 at a time, 6 at a time, and 7 at a time: - Number of ways to choose 3 points: \( C(7, 3) \) - Number of ways to choose 4 points: \( C(7, 4) \) - Number of ways to choose 5 points: \( C(7, 5) \) - Number of ways to choose 6 points: \( C(7, 6) \) - Number of ways to choose 7 points: \( C(7, 7) \) Calculating these: - \( C(7, 3) = \frac{7!}{3!(7-3)!} = 35 \) - \( C(7, 4) = \frac{7!}{4!(7-4)!} = 35 \) - \( C(7, 5) = \frac{7!}{5!(7-5)!} = 21 \) - \( C(7, 6) = \frac{7!}{6!(7-6)!} = 7 \) - \( C(7, 7) = 1 \) Now we add these values together: \( 35 + 35 + 21 + 7 + 1 = 99 \) Thus, a total of **99 different polygons** can be formed using the 7 distinct points. Isn’t it fascinating how combinations can create a multitude of shapes? This simply demonstrates the magic of geometry and combinatorial thinking!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad