Pregunta
upstudy study bank question image url

(b) The other triangle has side lengths 15,9 , and 12 . Compute the sum of the squares of the shorter lengths. \[ 9^{2}+12^{2}=\square \] Compute the square of the longest length. \( 15^{2}=\square \) What kind of triangle is it? Acute triangle Right triangle Obtuse triangle

Ask by Chavez Whittaker. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sum of the squares of the shorter lengths is 225, the square of the longest length is 225, and the triangle is a Right triangle.

Solución

To determine the type of triangle based on the side lengths 15, 9, and 12, we will follow these steps: 1. **Compute the sum of the squares of the shorter lengths (9 and 12)**: \[ 9^2 + 12^2 \] 2. **Compute the square of the longest length (15)**: \[ 15^2 \] 3. **Compare the results to classify the triangle**: - If \(9^2 + 12^2 > 15^2\), the triangle is acute. - If \(9^2 + 12^2 = 15^2\), the triangle is right. - If \(9^2 + 12^2 < 15^2\), the triangle is obtuse. Let's perform the calculations step by step. ### Step 1: Compute \(9^2 + 12^2\) \[ 9^2 = 81 \] \[ 12^2 = 144 \] Now, sum these values: \[ 9^2 + 12^2 = 81 + 144 = 225 \] ### Step 2: Compute \(15^2\) \[ 15^2 = 225 \] ### Step 3: Compare the results Now we compare: \[ 9^2 + 12^2 = 225 \] \[ 15^2 = 225 \] Since \(9^2 + 12^2 = 15^2\), the triangle is a right triangle. ### Final Answers: - The sum of the squares of the shorter lengths is \(225\). - The square of the longest length is \(225\). - The triangle is a **Right triangle**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The calculation for the sum of the squares of the shorter lengths goes as follows: \( 9^{2} + 12^{2} = 81 + 144 = 225 \). So, \( 9^{2} + 12^{2} = 225 \). Next up, let's compute the square of the longest length: \( 15^{2} = 225 \). Thus, \( 15^{2} = 225 \). Since \( 9^{2} + 12^{2} = 15^{2} \), this indicates that the triangle is a right triangle. You know what that means? This triangle is just a splendid example of a geometrical phenomenon that follows the Pythagorean theorem! Now, if you'd like to dive deeper into triangular types, you might find it fun to explore the world of triangle classification. Besides right triangles, you'll come across acute triangles (all angles less than 90 degrees) and obtuse triangles (one angle greater than 90 degrees). Each has its own set of properties that makes the world of geometry vibrant and lively!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad