Pregunta

(e) Consider the geometric sequence \( \frac{3}{4} ; \frac{3}{2} ; 3 ; \ldots \) (1) Calculate the sum of the first 10 terms of the sequence. (2) How many terms in this sequence will add up to \( \frac{12285}{4} \) ? (3) Determine the smallest value of \( k \) for which \( S_{k}>1000 \).

Ask by Higgins Long. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Answers:** 1. The sum of the first 10 terms is 767.25. 2. 12 terms add up to \( \frac{12285}{4} \). 3. The smallest \( k \) for which \( S_k > 1000 \) is 11.

Solución

Let's analyze the geometric sequence given: \[ \frac{3}{4}, \frac{3}{2}, 3, \ldots \] **Common Ratio (\( r \)):** To find the common ratio \( r \), divide the second term by the first term: \[ r = \frac{\frac{3}{2}}{\frac{3}{4}} = 2 \] So, the sequence is geometric with first term \( a = \frac{3}{4} \) and common ratio \( r = 2 \). ### (1) **Sum of the First 10 Terms** The sum of the first \( n \) terms of a geometric sequence is given by: \[ S_n = a \frac{r^n - 1}{r - 1} \] For \( n = 10 \): \[ S_{10} = \frac{3}{4} \cdot \frac{2^{10} - 1}{2 - 1} = \frac{3}{4} \cdot (1024 - 1) = \frac{3}{4} \cdot 1023 = \frac{3069}{4} = 767.25 \] **Answer:** The sum of the first 10 terms is \( \frac{3069}{4} \) or 767.25. ### (2) **Number of Terms Adding Up to \( \frac{12285}{4} \)** We need to find \( n \) such that: \[ S_n = \frac{12285}{4} \] Using the sum formula: \[ \frac{3}{4} \cdot (2^n - 1) = \frac{12285}{4} \] Multiply both sides by 4 to eliminate the denominator: \[ 3(2^n - 1) = 12285 \] Divide by 3: \[ 2^n - 1 = 4095 \quad \Rightarrow \quad 2^n = 4096 \] Since \( 2^{12} = 4096 \): **Answer:** 12 terms are needed. ### (3) **Smallest \( k \) for Which \( S_k > 1000 \)** We need to find the smallest \( k \) such that: \[ \frac{3}{4} \cdot (2^k - 1) > 1000 \] Multiply both sides by \( \frac{4}{3} \): \[ 2^k - 1 > \frac{4000}{3} \approx 1333.\overline{3} \] Thus: \[ 2^k > 1334.\overline{3} \] Finding the smallest integer \( k \): \[ 2^{10} = 1024 \quad \text{and} \quad 2^{11} = 2048 \] Since \( 2048 > 1334.\overline{3} \): **Answer:** The smallest value of \( k \) is 11. ### **Summary of Answers:** 1. **Sum of the first 10 terms:** \( \frac{3069}{4} \) or 767.25. 2. **Number of terms adding up to \( \frac{12285}{4} \):** 12 terms. 3. **Smallest \( k \) with \( S_k > 1000 \):** \( k = 11 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the problem, we start by identifying the first term and the common ratio of the geometric sequence. 1. The first term \( a \) is given as \( \frac{3}{4} \). To find the common ratio \( r \), we can divide the second term by the first term: \[ r = \frac{\frac{3}{2}}{\frac{3}{4}} = \frac{3/2}{3/4} = \frac{3 \cdot 4}{2 \cdot 3} = 2. \] Now we can use the formula for the sum of the first \( n \) terms of a geometric series: \[ S_n = a \frac{1 - r^n}{1 - r}, \] where \( a \) is the first term, \( r \) is the common ratio, and \( n \) is the number of terms. 1) For \( n = 10 \): \[ S_{10} = \frac{3}{4} \frac{1 - 2^{10}}{1 - 2} = \frac{3}{4} \frac{1 - 1024}{-1} = \frac{3}{4} \cdot 1023 = \frac{3069}{4}. \] 2) To find how many terms will sum to \( \frac{12285}{4} \), we set \( S_n = \frac{12285}{4} \): \[ S_n = \frac{3}{4} \frac{1 - 2^n}{1 - 2} \quad \Rightarrow \quad \frac{3}{4} \cdot (1 - 2^n) = \frac{12285}{4}. \] This simplifies to: \[ 3 (1 - 2^n) = 12285 \quad \Rightarrow \quad 1 - 2^n = \frac{12285}{3} = 4095 \quad \Rightarrow \quad -2^n = 4094. \] This would lead to: \[ 2^n = -4094, \] which is impossible, so there are no terms that add up to \( \frac{12285}{4} \). 3) We need to find the smallest value of \( k \) for which: \[ S_k > 1000. \] Using the formula: \[ S_k = \frac{3}{4} \cdot \frac{1 - 2^k}{-1} = \frac{3}{4} (2^k - 1). \] So we want: \[ \frac{3}{4} (2^k - 1) > 1000. \] Multiplying both sides by \( \frac{4}{3} \): \[ 2^k - 1 > \frac{4000}{3} \implies 2^k > 1333.33. \] Now we solve for \( k \). Since \( 2^{10} = 1024 \) and \( 2^{11} = 2048 \): \[ k = 11. \] Thus, the smallest value of \( k \) for which \( S_k > 1000 \) is \( k = 11 \).

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad