Pregunta
11.3 A wave that moves at the speed of 100 \( \mathrm{~m} \cdot \mathrm{~s}^{-1} \), has a wavelength of 40 m . Calculate the frequency.
Ask by Barnett Mckenzie. in South Africa
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The frequency of the wave is 2.5 Hz.
Solución
To calculate the frequency \( f \) of a wave, you can use the relationship between wave speed \( v \), wavelength \( \lambda \), and frequency \( f \):
\[
v = \lambda \times f
\]
Solving for frequency:
\[
f = \frac{v}{\lambda}
\]
**Given:**
- Wave speed \( v = 100 \ \mathrm{m/s} \)
- Wavelength \( \lambda = 40 \ \mathrm{m} \)
**Calculation:**
\[
f = \frac{100 \ \mathrm{m/s}}{40 \ \mathrm{m}} = 2.5 \ \mathrm{Hz}
\]
**Answer:**
The frequency of the wave is **2.5 Hz**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To find the frequency of the wave, you can use the wave speed formula: \( v = f \times \lambda \), where \( v \) is the speed of the wave, \( f \) is the frequency, and \( \lambda \) is the wavelength. In this case, you have \( v = 100 \, \mathrm{m/s} \) and \( \lambda = 40 \, \mathrm{m} \). Rearranging the formula to solve for frequency gives you: \[ f = \frac{v}{\lambda} \] Substituting in the values: \[ f = \frac{100 \, \mathrm{m/s}}{40 \, \mathrm{m}} = 2.5 \, \mathrm{Hz} \] So, the frequency of the wave is 2.5 Hz.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium