Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 49 and standard deviation 20 . What is the probability that \( X \) is between 21 and \( 64 ? \) Write your answer as a decimal rounded to the nearest thousandth.

Ask by Rogers Mejia. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 21 and 64 is 0.693.

Solución

To find the probability that \( X \) is between 21 and 64, given that \( X \) is normally distributed with a mean (\( \mu \)) of 49 and a standard deviation (\( \sigma \)) of 20, follow these steps: 1. **Standardize the values to Z-scores:** \[ Z_1 = \frac{21 - 49}{20} = \frac{-28}{20} = -1.4 \] \[ Z_2 = \frac{64 - 49}{20} = \frac{15}{20} = 0.75 \] 2. **Find the cumulative probabilities for each Z-score using the standard normal distribution table:** - \( \Phi(0.75) \approx 0.7734 \) - \( \Phi(-1.4) = 1 - \Phi(1.4) \approx 1 - 0.9192 = 0.0808 \) 3. **Calculate the probability that \( X \) is between 21 and 64:** \[ P(21 \leq X \leq 64) = \Phi(0.75) - \Phi(-1.4) = 0.7734 - 0.0808 = 0.6926 \] 4. **Round the result to the nearest thousandth:** \[ P(21 \leq X \leq 64) \approx 0.693 \] **Answer:** The probability is 0.693

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve for the probability that \( X \) is between 21 and 64 in a normally distributed variable with mean 49 and standard deviation 20, we first standardize the values using the Z-score formula: \[ Z = \frac{X - \mu}{\sigma} \] For \( X = 21 \): \[ Z_{21} = \frac{21 - 49}{20} = \frac{-28}{20} = -1.4 \] For \( X = 64 \): \[ Z_{64} = \frac{64 - 49}{20} = \frac{15}{20} = 0.75 \] Next, we look up these Z-scores in the standard normal distribution table or use a calculator: - The probability corresponding to \( Z = -1.4 \) is approximately 0.0808. - The probability corresponding to \( Z = 0.75 \) is approximately 0.7734. To find the probability that \( X \) is between 21 and 64, we subtract the two probabilities: \[ P(21 < X < 64) = P(Z < 0.75) - P(Z < -1.4) \approx 0.7734 - 0.0808 = 0.6926 \] Thus, the probability that \( X \) is between 21 and 64 is approximately \( \boxed{0.693} \) when rounded to the nearest thousandth.

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad