Pregunta
upstudy study bank question image url

F. Find the linear aproxuimation to the following function at fie given point a. \[ f(x)=-2 x^{2}+x a=1 \]

Ask by Cole Coleman. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The linear approximation of \( f(x) = -2x^2 + x \) at \( a = 1 \) is \( L(x) = -3x + 2 \).

Solución

To find the linear approximation (also known as the tangent line approximation) of the function \( f(x) = -2x^2 + x \) at the point \( a = 1 \), follow these steps: **1. Compute \( f(a) \):** \[ f(1) = -2(1)^2 + 1 = -2 + 1 = -1 \] **2. Find the derivative \( f'(x) \):** \[ f'(x) = \frac{d}{dx} (-2x^2 + x) = -4x + 1 \] **3. Compute \( f'(a) \):** \[ f'(1) = -4(1) + 1 = -4 + 1 = -3 \] **4. Write the linear approximation formula:** \[ L(x) = f(a) + f'(a)(x - a) \] **5. Substitute the values into the formula:** \[ L(x) = -1 + (-3)(x - 1) = -1 - 3x + 3 = -3x + 2 \] **Final Answer:** The linear approximation at \( a = 1 \) is \( L(x) = -3\,x + 2 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the linear approximation of the function \( f(x) = -2x^2 + x \) at the point \( a = 1 \), we first need to find \( f(1) \) and the derivative \( f'(x) \). Calculating \( f(1) \): \[ f(1) = -2(1)^2 + (1) = -2 + 1 = -1. \] Next, we find the derivative \( f'(x) \): \[ f'(x) = -4x + 1. \] Now, evaluating the derivative at \( a = 1 \): \[ f'(1) = -4(1) + 1 = -4 + 1 = -3. \] Now, we use the formula for the linear approximation: \[ L(x) = f(a) + f'(a)(x - a). \] Substituting the values, we get: \[ L(x) = -1 - 3(x - 1). \] This simplifies to: \[ L(x) = -1 - 3x + 3 = 2 - 3x. \] Thus, the linear approximation is: \[ L(x) = 2 - 3x. \] Now, here’s a fun fact about linear approximations: they are like the “best friends” of calculus! Just like how your best friend can help you navigate through life’s complexities, the linear approximation helps us simplify complicated functions near a specific point so we can understand their behavior better. If you're itching to dive deeper into the world of calculus, there's a treasure trove of resources out there! Books like "Calculus Made Easy" by Silvanus P. Thompson can make concepts feel less daunting, and online platforms such as Khan Academy offer interactive lessons that make learning calculus engaging and super fun!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad