Pregunta
upstudy study bank question image url

8. What should be the values of a and b so that the system \( \left\{\begin{array}{c}x+y+z=0 \\ 3 x-a y-z=4 \text { has no } \\ x+5 y+5 z=b\end{array}\right. \) solution.

Ask by Sanders Parry. in Ethiopia
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For the system to have no solution, \( a \) must be 1 and \( b \) must not be -4.

Solución

To determine the values of \( a \) and \( b \) for which the system of equations \[ \begin{cases} x + y + z = 0 \\ 3x - a y - z = 4 \\ x + 5y + 5z = b \end{cases} \] has **no solution**, we need to analyze the system for consistency. ### Step 1: Form the Augmented Matrix The augmented matrix for the system is: \[ \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 3 & -a & -1 & | & 4 \\ 1 & 5 & 5 & | & b \\ \end{pmatrix} \] ### Step 2: Perform Row Operations 1. **Eliminate \( x \) from the second and third equations:** - **Row2'** = Row2 - 3·Row1: \[ 3x - a y - z - 3(x + y + z) = 4 - 0 \implies - (a + 3)y - 4z = 4 \] So, Row2' becomes: \[ - (a + 3)y - 4z = 4 \] - **Row3'** = Row3 - Row1: \[ x + 5y + 5z - (x + y + z) = b - 0 \implies 4y + 4z = b \] So, Row3' becomes: \[ 4y + 4z = b \] 2. **Rewrite the simplified system:** \[ \begin{cases} - (a + 3)y - 4z = 4 \\ 4y + 4z = b \\ \end{cases} \] ### Step 3: Analyze for Inconsistency For the system to have **no solution**, these two equations must be **parallel but have different constants**, meaning their coefficients are proportional, but the constants are not. 1. **Check proportionality of coefficients:** \[ \frac{-(a + 3)}{4} = \frac{-4}{4} \implies -(a + 3) = -4 \implies a + 3 = 4 \implies a = 1 \] 2. **Ensure the constants are not in the same ratio:** When \( a = 1 \), the first equation becomes: \[ -4y - 4z = 4 \implies y + z = -1 \] The second equation becomes: \[ 4y + 4z = b \implies y + z = \frac{b}{4} \] For these to be inconsistent: \[ -1 \neq \frac{b}{4} \implies b \neq -4 \] ### Conclusion The system has **no solution** if and only if: - \( a = 1 \) - \( b \neq -4 \) ### Final Answer All real numbers a = 1 and b different from –4. In other words, a = 1 and b ≠ −4.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To ensure the system has no solutions, the equations must be inconsistent. This occurs when the equations represent parallel planes that never intersect. We analyze the system step by step: 1. **Coefficients and Representation**: Rewrite the equations in standard form: - \( x + y + z = 0 \) (Equation 1) - \( 3x - ay - z = 4 \) (Equation 2) - \( x + 5y + 5z = b \) (Equation 3) 2. **Eliminate Variables**: From Equation 1, we express \( z \): \[ z = -x - y \] Substitute \( z \) in Equations 2 and 3. For Equation 2: \[ 3x - ay - (-x - y) = 4 \implies 4x + (1-a)y = 4 \] For Equation 3: \[ x + 5y + 5(-x - y) = b \implies -4x + 0y = b \implies x = -\frac{b}{4} \] 3. **Finding Conditions**: Now, substituting \( x = -\frac{b}{4} \) into \( 4x + (1-a)y = 4 \): \[ 4\left(-\frac{b}{4}\right) + (1-a)y = 4 \implies -b + (1-a)y = 4 \] Rearranging gives us: \[ (1-a)y = 4 + b \] For the system to have no solutions, we need the planes described by the equations to be parallel. This could happen if the ratios of the coefficients of \(x\), \(y\), and \(z\) are equal for the first two equations, but different for the third. Therefore, equate the coefficients: \[ \frac{1}{1} \neq \frac{3}{1-a} \implies 1(1-a) \neq 3 \implies 1-a \neq 3 \implies a \neq -2. \] For \(b\), set it so that the inconsistency is evident: \[ (1-a)(\text{something}) \neq 4 + b \text{ when you choose } a \neq -2. \] This will ensure inconsistency, a nice guiding principle for choosing specific values for \(a\) and \(b\). 4. **Conclusion**: We can choose \(a = 3\) (as this satisfies \(a \neq -2\)), leading to \(b\) choices that yield a scenario where the system cannot solve, such as setting \(b = 5\). Thus, a possible answer is \(a = 3\) and \(b = 5\).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad