Select your answer Convert \( 120^{\circ} \) into radians. \( \frac{3 \pi}{3} \) \( \frac{3 \pi}{5} \) \( \frac{5 \pi}{4} \) \( 2 \pi \) (3 out of 25)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To convert degrees to radians, you can use the conversion factor \( \frac{\pi \text{ radians}}{180^{\circ}} \). So, to convert \( 120^{\circ} \): \[ 120^{\circ} \times \frac{\pi \text{ radians}}{180^{\circ}} = \frac{120\pi}{180} = \frac{2\pi}{3} \] Thus, the correct simplified form is \( \frac{2\pi}{3} \). Looks like this question has a small mistake in the answer options provided! You'll find radians popping up everywhere, especially in math, physics, and engineering. Whenever you see circles or angles, chances are you're going to need radians! It's also common to use radians when mapping waves in trigonometry or when calculating angular velocity, ensuring your equations stay elegant and efficient.